Меню
Бесплатно
Главная  /  Всё про нос  /  Привет студент. Флуорофоры в медицине и биологии. Смотреть что такое "Квантовая точка" в других словарях

Привет студент. Флуорофоры в медицине и биологии. Смотреть что такое "Квантовая точка" в других словарях

4 декабря 2016 в 22:35

Квантовые точки и зачем их ставят

  • Квантовые технологии ,
  • Мониторы и ТВ

Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

  1. ħ - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Теги:

  • QLED
  • LED
  • Quantum display
Добавить метки

June 14th, 2018

Квантовая точка — фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах.

Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как — ħ/(2md^2), где:
ħ — приведённая постоянная Планка;
d — характерный размер точки;
m — эффективная масса электрона на точке

Если же говорить простым языком то квантовая точка — это полупроводник, электрические характеристики которого зависят от его размера и формы.
Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек
Различают два типа:
эпитаксиальные квантовые точки;
коллоидные квантовые точки.

По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов. Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации — также в полярных растворителях.

Конструкция квантовых точек
Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях
История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?
Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.

Жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный, зеленый, синий).

Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Стоит отметь что область применения квантовых точек не ограничивается только LED — мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками
В телевизорах QLED в качестве источника света выступают квантовые точки — это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10-12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2-3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек. В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

Ученые построили теорию формирования широко распространенного класса квантовых точек, которые получают из содержащих кадмий и селен соединений. В течение 30 лет разработки в этом направлении во многом полагались лишь на метод проб и ошибок. Статья опубликована в журнале Nature Communications.

Квантовые точки — это наноразмерные кристаллические полупроводники с примечательными оптическими и электронными свойствами, благодаря которым они уже нашли применение во многих областях исследований и технологий. Они обладают промежуточными свойствами между объемными полупроводниками и отдельными молекулами. Однако в процессе синтеза этих наночастиц остаются неясные моменты, так как полностью понять, как взаимодействуют реагенты, некоторые из которых высокотоксичны, ученые не смогли.

Тодд Краусс и Ли Френетт из Рочестерского университета собираются изменить эту ситуацию. В частности, они выяснили, что в процессе реакции синтеза появляются токсичные соединения, которые использовали для получения первых квантовых точек 30 лет назад. «По сути дела мы отправились "назад в будущее" благодаря нашему открытию, — поясняет Краусс. — Оказалось, что применяемые сегодня более безопасные реактивы превращаются именно в те самые вещества, использование которых пытались избежать десятилетиями. Они же, в свою очередь, реагируют с образованием квантовых точек».

Во-первых, оно уменьшит количество догадок при производстве квантовых точек на основе кадмия или селена, что приводило к несоответствиям и невоспроизводимости, мешавшим поиску промышленного применения.
Во-вторых, предупредит исследователей и компании, работающие с синтезом квантовых точек в больших объемах, что они по-прежнему имеют дело с такими опасными веществами, как селеноводород и алкил-кадмиевые комплексы, хотя и неявно.
В-третьих, прояснит химические свойства фосфинов, применяемых во многих процессах синтеза квантовых точек при высокой температуре.

Источники:

Квантовые точки - это небольшие кристаллы, излучающие свет с точно регулируемым цветовым значением. Они существенно повышают качество изображения, не влияя при этом на конечную стоимость устройств.

Quantum dot LED — новая технология экранов Обычные ЖК-телевизоры способны передавать лишь 20–30% цветового диапазона, воспринимаемого человеческим глазом. Изображение на OLED-экране больше соответствует реальности, однако данная технология не подходит для массового производства крупных дисплеев. Но недавно на ее место пришла новая, обеспечивающая возможность отображения точных цветовых значений. Речь идет о так называемых квантовых точках. В начале 2013 года компания Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED). В этом году в серийное производство будут запущены другие модели устройств, при этом стоить они будут как обычные ЖК-телевизоры и значительно меньше, чем OLED-решения. Чем же отличаются дисплеи, произведенные по новой технологии, от стандартных ЖК-экранов?

В ЖК-телевизорах нет чистых цветов

Жидкокристаллические дисплеи состоят из пяти слоев: исходной точкой является белый свет, излучаемый светодиодами и проходящий через несколько фильтров. Поляризационные фильтры, расположенные спереди и сзади, в сочетании с жидкими кристаллами регулируют проходящий световой поток, понижая или повышая яркость. Это возможно благодаря транзисторам пикселей, которые влияют на то, сколько света пройдет через светофильтры (красный, зеленый, синий). Сочетание цветов этих трех субпикселей, на которые наложены фильтры, в итоге дает определенное цветовое значение пикселя. Смешение цветов не вызывает проблем, но получить таким образом чистый красный, зеленый или синий невозможно. Причина здесь кроется в фильтрах, которые пропускают не одну волну определенной длины, а целый пучок различных по длине волн. Например, через красный светофильтр проходит также оранжевый свет.

Светодиод светится при подаче на него напряжения. Благодаря этому электроны переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. Поэтому и излученные фотоны имеют различную энергию, что выражается в разной длине волн излучения.

Квантовые точки - стабильный свет

В дисплеях QLED в качестве источника света выступают квантовые точки - кристаллы размером несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением - энергетическая зона уменьшается до одного энергетического уровня. Данный эффект объясняется крохотными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. Например, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно получить также при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

В связи с тем обстоятельством, что массовое производство синих кристаллов сопряжено с большими сложностями и затратами, представленный компанией Sony телевизор не является «чистым» QLED-телевизором на основе квантовых точек. В задней части производимых QD Vision дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

Квантовые точки в HD-телевизора

Наши глаза способны видеть больше цветов, чем могут отобразить HD-телевизоры. Изменить данную ситуацию могут дисплеи на основе квантовых точек. Квантовые точки - это крохотные частицы диаметром несколько нанометров, которые излучают свет с одной определенной длиной волны и всегда с одним и тем же цветовым значением. Если же говорить о светофильтрах, используемых в современных телевизорах, то они обеспечивают лишь размытые цвета.

Экраны без светофильтров

В современных телевизорах белый свет светодиодных ламп (подсветка) становится цветным благодаря светофильтрам. В дисплее на основе квантовых точек (QLED) цвет формируется непосредственно в источнике излучения. Системы регулировки яркости посредством жидких кристаллов и поляризации изменений не претерпели.


Световые ячейки в сравнении

В светодиодах электроны переходят из материала N-типа в материал P-типа, отдавая при этом энергию в виде белого света с различными длинами волн. Фильтр формирует нужный цвет. В телевизорах QLED нанокристаллы излучают свет с определенной длиной волны, а значит, и цветом.

Более широкий цветовой охват

Дисплеи на квантовых точках способны отображать более естественные цвета (красный, зеленый, синий), чем традиционные телевизоры, покрывая более широкий цветовой диапазон, который наиболее близок к нашему цветовому восприятию.


Размер и материал определяют цвет

Когда электрон (e) соединяется с квантовой точкой, освобождается энергия в виде фотонов (P). Используя различные материалы и изменяя размер нанокристаллов, можно влиять на величину этой энергии и, как следствие, длину световой волны.

Важнейшим объектом физики низкоразмерных полупроводниковых геретоструктур являются так называемые квазинульмерные системы или квантовые точки. Дать точное определение квантовых точек достаточно трудно. Это связано с тем, что в физической литературе квантовыми точками называют широкий класс квазинульмерных систем, в которых проявляется эффект размерного квантования энергетических спектров электронов, дырок и экситонов. К этому классу, прежде всего, относят полупроводниковые кристаллы, у которых все три пространственных размера порядка боровского радиуса экситона в объёмном материале. Данное определение предполагает, что квантовая точка находится в вакууме, газовой или жидкой среде, либо ограничена каким-либо твердотельным материалом, отличающимся от материала, из которого она изготовлена. В этом случае трёхмерное пространственное ограничение элементарных возбуждений в квантовых точках обусловлено наличием границ раздела между различными материалами и средами, т. е. существованием гетерограниц. Такие квантовые точки часто называют микро- или нанокристаллами. Однако это простое определение не является полным, поскольку есть квантовые точки, для которых гетерограницы в одном либо двух измерениях отсутствуют. Несмотря на это, движение электронов, дырок или экситонов в таких квантовых точках пространственно ограничено из-за наличия потенциальных ям, возникающих, например, благодаря механическим напряжениям или флуктуациям толщины полупроводниковых слоёв. В этом смысле можно сказать, что квантовая точка - это любая трёхмерная потенциальная яма, заполненная полупроводниковым материалом, с характерными размерами порядка, в которой движение электронов, дырок и экситонов пространственно ограничено в трёх измерениях .

Методы изготовления квантовых точек

Среди всего многообразия различных квантовых точек можно выделить несколько основных типов, которые наиболее часто используются в экспериментальных исследованиях и приложениях. Прежде всего, это нанокристаллы в жидкостях, стёклах и в матрицах широкозонных диэлектриков (рис.1). Если они выращиваются в стеклянных матрицах, то, как правило, имеют сферическую форму. Именно в такой системе, представлявшей собой квантовые точки из CuCl, внедрённые в силикатные стёкла, при исследовании однофотонного поглощения был впервые обнаружен эффект трёхмерного размерного квантования экситонов. Эта работа положила начало бурному развитию физики квазинульмерных систем.

Рис.1.

Квантовые точки в кристаллической диэлектрической матрице могут быть прямоугольными параллелепипедами, как это имеет место для квантовых точек на основе CuCl, встроенных в NaCl. Нанокристаллами являются и квантовые точки, выращенные в полупроводниковых матрицах методом капельной эпитаксии .

Другим важным типом квантовых точек являются так называемые самоорганизованные квантовые точки, которые изготавливаются методом Странски-Крастанова с помощью техники молекулярно-лучевой эпитаксии (рис.2). Их отличительной особенностью является то, что они связаны между собой посредством сверхтонкого смачивающегося слоя, материал которого совпадает с материалом квантовых точек. Таким образом, в этих квантовых точках отсутствует одна из гетерограниц. К этому же типу, в принципе, могут быть отнесены пористые полупроводники, например пористый Si, а также потенциальные ямы в тонких полупроводниковых слоях, возникающие благодаря флуктуациям толщины слоёв .

Рис.2.

Рис.3. Структура с индуцированными механическими напряжениями InGaAs квантовыми точками. 1 - накрывающий слой GaAs; 2 - самоорганизованные InP квантовые точки, которые задают механические напряжения, приводящие к возникновению трёхмерных потенциальных ям в слое InGaAs; 3 и 6 - буферные слои GaAs; 4 - тонкая InGaAs квантовая яма, в которой образуются индуцированные механическими напряжениями квантовые точки; 5 - квантовые точки; 7 - подложка GaAs. Точечными линиями показаны профили механических наряжений.

Квантовые точки, индуцированные механическими напряжениями, можно отнести к третьему типу (рис.3). Они образуются в тонких полупроводниковых слоях благодаря механическим напряжениям, которые возникают из-за рассогласования постоянных решётки материалов гетерограниц. Эти механические напряжения приводят к появлению в тонком слое трёхмерной потенциальной яме для электронов, дырок и экситонов. Из рис. 3. видно, что такие квантовые точки не имеют гетерограниц в двух направлениях .

На международных выставках демонстрируется много новых дисплейных технологий, однако далеко не все они жизнеспособны и обладают соответствующими возможностями для успешного коммерческого внедрения. Одно из приятных исключений — технология квантовых точек, которая уже применяется в подсветке ЖК-дисплеев. Стоит рассказать об этой технической инновации более подробно.

Квантовые точки

Квантовые точки – это наночастицы полупроводниковых материалов. Их параметры определяются размерами: с уменьшением размеров кристалла растет расстояние между энергетическими уровнями. Когда электрон переходит на более низкий уровень, происходит испускание фотона. Изменяя размеры точки, можно регулировать энергию фотона и, как следствие, цвет света.

Это не новое открытие, на самом деле квантовые точки были созданы еще более тридцати лет назад. Но до последнего времени они применялись только в специальных научных приборах в лабораториях. Строго говоря, квантовые точки – это микроскопические элементы, способные излучать свет в узком диапазоне волн. Причем в зависимости от их размеров свет может быть зеленый, красный или синий.

Изменяя их размер, можно тонко регулировать длину волны испускаемого света. Эта технология, применяемая в современных моделях телевизоров, берет свое начало в 2004 году, когда была организована компания QD Vision. Изначально сотрудники этой исследовательской лаборатории старались применить квантовые точки для замены органических красителей при маркировке различных биологических систем, однако затем технологию решили опробовать в телевизорах.

К этой идее вскоре подключились известные компании. В частности, в 2010 году исследователи работали совместно с компанией LG над проектом QLED. Впрочем, самая концепция технологии применительно к ЖК-телевизорам постоянно подвергалась изменениям, ее рабочее название также несколько раз менялось. Спустя год уже в сотрудничестве с Samsung был создан прототип цветного экрана на квантовых точках. Однако он не пошел в серию. Последняя реализация этой концепции стала частью технологии Color IQ от Sony, которая представила экран с подсветкой Triluminos.

Как известно, все ЖК-телевизоры создают картинку путем смешения базовых цветов – красного, зеленого и синего (модель RGB). Иногда добавляется желтый, что, впрочем, существенно не влияет на саму систему создания картинки на ЖК-экране. Смешение цветов RGB в ЖК-телевизорах осуществляется посредством цветных фильтров, а в плазменных панелях – благодаря люминофору.

В классических ЖК-моделях в роли подсветки применяются «белые» светодиоды. Цвет в белом спектре, проходя через цветные фильтры, дает определенный оттенок. В более продвинутых моделях применяются люминофорные светодиоды, которые испускают свет в синей области. Затем этот свет, смешиваясь с желтым, превращается в визуально белый. Для создания же на экране из подобного белого цвета, соответственно, красного, синего и зеленого применяются светофильтры. Это достаточно эффективно, но все же впустую расходуется много энергии. Кроме того, тут инженерам приходится искать определенный баланс между качеством цветопередачи и яркостью подсветки.

Преимущества телевизоров на квантовых точках

Два года назад компания Sony впервые представила серийно выпускаемые модели телевизионных устройств с подсветкой Triluminos, в которой как раз и реализованы квантовые точки. Это, в частности, KD-65X9000A. В подсветке применяются синие диоды, но здесь нет желтого люминофора. В результате, синий свет, не смешиваясь, напрямую проходит через специальный элемент IQ, который содержит красную и зеленую квантовые точки. Основными достоинствами технологии производитель называет более глубокую цветопередачу и минимизация потерь в яркости.

Предполагается, что в сравнении с LED-подсветкой квантовые точки обеспечат увеличение цветовой гаммы практически на 50 процентов. Цветовой охват в новых TV Sony с подсветкой Triluminos близок к 100% NTSC, модели же с обычной подсветкой имеют около 70% NTSC. Таким образом, можно констатировать, что телевизоры с подсветкой на квантовых точках действительно могут улучшить качество изображения, сделав цветопередачу более реалистичной.

Но вот насколько более реалистичной? Ведь известно, что в тех же телевизорах Sony картинка создается при помощи привычных фильтров, осуществляющих смешение цветов? Ответить на этот вопрос довольно сложно, тут многое зависит от субъективного восприятия качества изображения. Во всяком случае, счастливые обладатели первых телевизоров Sony с новой подсветкой отмечают, что изображение на экране выглядит как картина, написанная более чистыми цветными красками.


То, что и другие ведущие компании мгновенно подключились к внедрению этого технологического новшества, подтверждает тот факт, что квантовые точки не являются исключительно маркетинговым ходом. На CES 2015 компания Samsung представила телевизоры SUHD TV, в которых также была реализована подобная технология. Отмечается, что новые телевизоры обеспечивают более высокое качество изображения при цене ниже, чем у OLED-моделей. Компания LG также представила на выставке ULTRA HD телевизоры с технологией квантовых точек (Quantum Dot).

Сравнение с OLED не случайно. Ведь многие компании сначала обратились к OLED-технологии, как к способу повысить качество изображения современных телевизоров, но столкнулись с проблемой их производства при запуске в серию. Особенно это касается OLED-телевизоров с большой диагональю экрана и сверхвысоким разрешением.

В лице квантовых точек был найден своеобразный запасной вариант — цветовая гамма на таких телевизорах практически так же хороша, как и на OLED-дисплеях, а проблем с промышленным освоением технологии практически нет. Это позволяет компаниям выпускать телевизоры, которые по качеству картинки будут соперничать с OLED-технологией, оставаясь по цене доступными широкому кругу потребителей.