Меню
Бесплатно
Главная  /  Всё про горло  /  Значение красных ядер в регуляции тонуса. Красное ядро. Ретикулярная формация ствола мозга

Значение красных ядер в регуляции тонуса. Красное ядро. Ретикулярная формация ствола мозга

Вентральную часть составляют массивные ножки мозга, основную часть которых занимают пирамидные пути. между ножками находится межножковая ямка, fossa interpeduncularis, из которой выходит III (глазодвигательный) нерв. В глубине межножковой ямки - заднее продырявленное вещество (substantia perforata posterior).

Дорсальная часть - пластинка четверохолмия, две пары холмиков, верхние и нижние (culliculi superiores & inferiores). Верхние, или зрительные холмики несколько крупнее нижних, или слуховых. Холмики связаны со структурами - коленчатыми телами, верхние - с латеральными, нижние - с медиальными. С дорсальной стороны на границе с мостом отходит IV (блоковый) нерв, сразу же огибает ножки мозга, выходя на переднюю сторону. Четкой анатомической границы с промежуточным мозгом нет, за ростральную границу принята задняя комиссура.

Внутри нижних холмиков находятся слуховые ядра, туда идет латеральная петля. Вокруг сильвиева водопровода - центральное серое веществоsubstantia grisea centralis.

Средний мозг является продолжением моста. На базальной поверхности головного мозга средний мозг отделяется от моста достаточно четко благодаря поперечным волокнам моста. С дорсальной стороны средний мозг отграничивается от моста мозга по уровню перехода IV желудочка в водопровод и нижних холмиков крыши. На уровне перехода IV желудочка в водопровод среднего мозга верхнюю часть IV желудочка формирует верхний мозговой парус, где образуют перекрест волокна блокового нерва и переднего спиномозжечкового пути.

В латеральных отделах среднего мозга в него входят верхние мозжечковые ножки, которые, постепенно погружаясь в него, образуют перекрест у средней линии. Дорсальная часть среднего мозга, расположенная кзади от водопровода, представлена крышей (tectum mesencephali ) с ядрами нижних и верхних холмиков.

Строение ядер нижних холмиков простое: они состоят из более или менее гомогенной массы нервных клеток среднего размера, играя существенную роль в реализации функции и сложных в ответ на звуковые раздражения. Ядра верхних холмиков организованы более сложно и имеют слоистое строение, участвуя в осуществлении “автоматических” , связанных со зрительной функцией, т.е. безусловных рефлексов в ответ на зрительные раздражения. Кроме того, эти ядра координируют движения туловища, мимические реакции, движения глаз, головы, ушей и т.д. в ответ на зрительные стимулы. Осуществляются эти рефлекторные реакции благодаря покрышечно-спиномозговому и покрышечно-бульбарному путям.

Вентральнее от верхних и нижних холмиков крыши находится водопровод среднего мозга, окруженный центральным . В нижнем отделе покрышки среднего мозга располагается ядро блокового нерва (nucl. n. trochlearis ), а на уровне среднего и верхнего отделов – комплекс ядер глазодвигательного нерва (nucl. n. oculomotorius ). Ядро блокового нерва, состоящее из немногочисленных крупных многоугольных клеток, локализуется под водопроводом на уровне нижних холмиков. Ядра глазодвигательного нерва представляют собой комплекс, в который входят главное ядро глазодвигательного нерва, крупноклеточное, сходное по морфологии с ядрами блокового и отводящего нервов, мелкоклеточное непарное центральное заднее ядро и наружное мелкоклеточное добавочное ядро. Ядра глазодвигательного нерва располагаются в покрышке среднего мозга у средней линии, вентрально отводопровода, на уровне верхних холмиков крыши среднего мозга.

Важными образованиями среднего мозга являются также красные ядра и черное вещество. Красные ядра (nucll. ruber ) располагаются вентролатеральнее центрального серого вещества среднего мозга. В красных ядрах оканчиваются волокна передних мозжечковых ножек, корково-красноядерные волокна и волокна из образований стриопаллидарной системы. В красном ядре начинаются волокна красноядерно-спинномозгового, а также красноядерно-оливного путей, волокна, идущие в кору большого мозга. Таким образом, красное ядро является одним из центров, участвующих в регуляции тонуса и координации движений. При поражении красного ядра и его путей у животного развивается так называемая децеребрационная ригидность. Вентральнее от красного ядра располагается черное вещество (subst. nigra ), которое как бы отделяет покрышку среднего мозга от его основания. Черное вещество также имеет отношение к регуляции мышечного тонуса.

Основание ножки среднего мозга состоит из волокон, которые соединяют кору большого мозга и другие образования конечного мозга с нижележащими образованиями мозгового ствола и . Большая часть основания занята волокнами . При этом в медиальной части располагаются волокна, идущие из лобных областей

3.3.4 Красное ядро

Среди ядер серого вещества среднего мозга самое значительное - красное ядро, (nucleus ruber). Это удлиненное образование простирается в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий тракт, tractus rubrospinalis, соединяющий красное ядро с передними рогами спинного мозга. Пучок этот после выхода из красного ядра перекрещивается с аналогичным пучком противоположной стороны в вентральной части срединного шва, образуя вентральный перекрест покрышки.


3.3.5 Серое и белое вещество мозгового водопровода

Водопровод среднего мозга, или сильвиев водопровод (aqueductus mesencephali) – узкий канал длиной 1,5 – 2,0 см, соединяющий полости III и IV желудочков. Его окружает центральное серое вещество (substantia grisea centralis), являющееся частью ретикулярной формации среднего мозга. Оно состоит из мелких клеток, которые образуют слой толщиной в 2-5мм. В нем находятся ядра глазодвигательного, блокового и тройничного нервов, а так же добавочное ядро глазодвигательного нерва (парасимпатическое ядро автономной нервной системы) и промежуточное ядро (одно из ядер ретикулярной формации).

3.4 Белое и серое вещество промежуточного мозга

Промежуточный мозг (diencephalon), залегает под мозолистым телом и сводом, срастаясь по бокам с полушариями конечного мозга. Дорзальный отдел представлен парой зрительных бугров (thalamus opticus). К таламусу относятся также структуры, объединяемые в забугорье (metathalamus) – подушка (pulvinar), медиальные и латеральные коленчатые тела (corpus geniculatum lateralis et medialis).

На рисунке: 1 – corpus callosum, 2 – cavum septi pellucidi, 3 – septum pellucidum, 4 – fornix (поперечный разрез столбов), 5 – comissura anterior, 6 – adheiso interthalamica, 7 – comissura posterior, 8 – tectum mesencephali, 9 – corpus pineale, 10 – thalamus, 11 – ventriculus tertius, 12 – nucl. caudatus.


У верхней части зрительных бугров располагается надбугорье (epithalamus). В вентральной части промежуточного мозга находится нижнебугорная область (hypothalamus).

Гипоталамус выделяется в промежуточном мозге как отдельная область, а таламус, эпиталамус и метаталамус объединяют в зрительный мозг (thalamencephalon).

Полостью промежуточного мозга является III желудочек (ventriculus tertius).

Серое вещество промежуточного мозга составляют ядра, относящиеся к подкорковым центрам всех видов чувствительности. В промежуточном мозге расположены ретикулярная формация, центры экстрапирамидальной системы, вегетативные центры (регулируют все виды обмена веществ), нейросекреторные ядра.

Белое вещество промежуточного мозга представлено проводящими путями восходящего и нисходящего направления, обеспечивающими двустороннюю связь подкорковых образований с корой большого мозга и ядрами спинного мозга. Помимо этого, к промежуточному мозгу относятся две железы внутренней секреции - гипофиз, принимающий участие вместе с соответствующими ядрами гипоталамуса в образовании гипоталамо-гипофизарной системы, и эпифиз (шишковидное тело).

3.4.1 Таламус

Зрительный бугор (thalamus) представляет собой большие парные скопления серого вещества яйцевидной формы, причем заостренный конец образует передний бугорок таламуса (tuberculum anterius thalami), а утолщенный край называется подушкой (pulvinar). Скопления эти находятся в боковых стенках промежуточного мозга по бокам III желудочка. Их медиальная поверхность, покрытая тонким слоем серого вещества, свободно выступает в полость третьего желудочка, являясь его боковой стенкой; на этой поверхности проходит подбугорная борозда (sulcus hypothalamicus), отграничивающая таламус от гипоталамуса. Дорсальная поверхность покрыта тонким слоем белого вещества - stratum zonale. Серое вещество, входящее в состав (зрительного) бугра, образует ядра зрительного бугра, nuclei thalami. В настоящие время выделяют около 40 ядер. Основными ядрами таламуса являются: 1. Переднее ядро (nucleus anterior thalami), которое располагается в переднем бугорке таламуса; 2. Медиальное ядро (nucleus medialis thalami) залегает у медиальной поверхности зрительного бугра; 3. Боковое ядро (nucleus lateralis thalami), наиболее крупное из трех ядер, располагается вентро-латерально по отношению к переднему и медиальному.

Эти ядра отграничиваются одно от другого и сами разделяются на ряд меньших по величине ядер посредством белых прослоек, мозговых пластинок зрительного бугра (laminae medullares thalami). Среди этих пластинок различают наружную и внутреннюю, а так же так называемый решетчатый слой, отграничивающий вместе с наружной мозговой пластинкой зрительный бугор с его боковой стороны. На границе перехода верхней поверхности в дорсальную находится узкая мозговая полоска зрительного бугра (stria medullaris thalami), далее образующая треугольник поводка (trigonum habenulae), а затем - поводок (habenula).

С нервными клетками таламуса вступают в контакт отростки нервных клеток вторых (кондукторных) нейронов всех чувствительных проводящих путей (за исключением обонятельного, вкусового и слухового). Поэтому таламус фактически является подкорковым чувствительным центром. Часть отростков нейронов таламуса направляется к ядрам полосатого тела конечного мозга (в связи с этим таламус рассматривается как чувствительный центр экстрапирамидной системы), а часть - таламокортикальные пучки (fasciculi thalamocorticales) - к коре большого мозга. Под таламусом располагается так называемая субталамическая область (regio subthalamica), которая книзу продолжается в покрышку ножки мозга.





Нервных импульсов, придавая им эмоциональную окраску. Специфическая часть нервной системы делится на центральную и периферическую (по топографическому принципу). К центральной относится головной и спинной мозг, к периферической – нервы, сплетения, узлы (ганглии), периферические нервные окончания. По функциональному признаку центральная нервная система делится на анимальную (соматическая, животная...

Плотности на фоне внутривенного введения KB 05-1. МР томография с самого начала своего клинического использования стала методом выбора в визуализации очагов демиелинизации спинного мозга. Как и при исследовании церебральной формы рассеянного склероза, Т2-взвешенные МРТ являются наиболее информативными для выявления очагов демиелинизации в спинном мозге. Т1-взвешенные томограммы полезны в...

Оглавление темы "Средний мозг, mesencephalon.":

Черное вещество, substantia nigra. Красное ядро, nucleus ruber. Топография черного вещества. Топография красного ядра.

Substantia nigra простирается на всем протяжении ножки мозга от моста до промежуточного мозга; по своей функции относится к экстрапирамидной системе.

Расположенное вентрально от substantia nigra основание ножки мозга содержит продольные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижележащим отделам центральной нервной системы (tractus corticopontmus, corticonuclearis, corticospinalis и lдр.).
Tegmentum , находящаяся дорсально от substantia nigra , содержит преимущественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зрительного и обонятельного.

Среди ядер серого вещества самое значительное - красное ядро, nucleus ruber . Это удлиненное колбасовидное образование простирается в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий тракт, tractus rubrospinal , соединяющий красное ядро с передними рогами спинного мозга. Пучок этот после выхода из красного ядра перекрещивается с аналогичным пучком противоположной стороны в вентральной части срединного шва - вентральный перекрест покрышки.
Nucleus ruber является весьма важным координационным центром экстрапирамидной системы, связанным с остальными ее частями. К нему проходят волокна от мозжечка в составе верхних ножек последнего после их перекреста под крышей среднего мозга, вентрально от aqueductus cerebri , а также от pallidum - самого нижнего и самого древнего из подкорковых узлов головного мозга, входящих в состав экстрапирамидной системы. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него tractus rubrospinal оказывают влияние на всю скелетную мускулатуру в смысле регуляции бессознательных автоматических движений.

Средний мозг состоит из:

Бугров четверохолмия,

Красного ядра,

Черной субстанции,

Ядер шва.

Красное ядро – обеспечивает тонус скелетной мускулатуры, перераспределение тонуса при изменении позы. Просто потянуться – это мощная работа головного и спинного мозга, за которую отвечает красное ядро. Красное ядро обеспечивает нормальный тонус нашей мускулатуры. Если разрушить красное ядро возникает децеробрационная регидность, при этом резко повышается тонус у одних животных сгибателей, у других – разгибателей. А при абсолютном разрушении повышается сразу оба тонуса, и все зависит от того какие мышцы сильнее.

Черная субстанция – Каким образом возбуждение от одного нейрона передается к другому нейрону? Возникает возбуждение – это биоэлектрический процесс. Он дошел до конца аксона, где выделяется химическое вещество – медиатор. Каждая клетка имеет какой-то свой медиатор. В черной субстанции в нервных клетках вырабатывается медиатор дофамин . При разрушении черной субстанции возникает болезнь Паркинсона (постоянно дрожат пальцы рук, голова, или присутствует скованность в результате того, что к мышцам идет постоянный сигнал) потому, что в мозге не хватает дофамина. Черная субстанция обеспечивает тонкие инструментальные движения пальцев и оказывает влияние на все двигательные функции. Черная субстанция оказывает тормозное влияние на моторную кору через стриполидарную систему. При нарушении невозможно выполнять тонкие операции и возникает болезнь Паркинсона (скованность, тремор).

Сверху - передние бугры четверохолмия, а внизу - задние бугры четверохолмия. Смотрим мы глазами, а видим затылочной корой больших полушарий, где находится зрительное поле, где формируется образ. От глаза отходит нерв, проходит через ряд подкорковых образований, доходит до зрительной коры, зрительной коры нет, и мы ничего не увидим. Передние бугры четверохолмия – это первичная зрительная зона. С их участием возникает ориентировочная реакция на зрительный сигнал. Ориентировочная реакция – это «реакция что такое?» Если разрушить передние бугры четверохолмия зрение сохранится, но будет отсутствовать быстрая реакция на зрительный сигнал.

Задние бугры четверохолмия – это первичная слуховая зона. С ее участием возникает ориентировочная реакция на звуковой сигнал. Если разрушить задние бугры четверохолмия- слух сохранится но не будет ориентировочной реакции.

Ядра шва – это источник другого медиатора серотонина . Эта структура и этот медиатор принимает участие в процессе засыпания. Если разрушить ядра шва, то животное находится в постоянном состоянии бодрствовании и быстро погибает. Кроме того, серотонин принимает участие в обучении с положительным подкреплением (это когда крысе дают сыр) Серотонин обеспечивает такие черты характера, как незлопамятность, доброжелательность, у агрессивных людей недостаток серотонина в мозге.



12) Таламус – коллектор афферентных импульсов. Специфические и неспецифические ядра таламуса. Таламус – центр болевой чувствительности.

Таламус – зрительный бугор. Первым обнаружили в нем отношение к зрительным импульсам. Является коллектором афферентных импульсов, тех, что идут от рецепторов. В таламус поступают сигналы от всех рецепторов, кроме обонятельных. В таламус поступает инфа от коры бп от мозжечка и от базальных ганглиев. На уровне таламуса идет обработка этих сигналов, происходит отбор только наиболее важной для человека в данный момент информации, которая далее поступает в кору. Таламус состоит из нескольких десятков ядер. Ядра таламуса делятся на две группы: специфические и неспецифические. Через специфические ядра таламуса сигналы поступают строго к определенным зонам коры, например зрительная в затылочную, слуховая в височную долю. А через неспецифические ядра информация поступает диффузно ко всей коре, чтобы повысить ее возбудимость, для того чтобы более четко воспринимать специфическую информацию. Они готовят кору бп к восприятию специфической инф-ии. Высший центр болевой чувствительности - это таламус. Таламус является высшим центром болевой чувствительности. Боль формируется обязательно с участием таламуса, и при разрушении одних ядер таламуса полностью теряется болевая чувствительность, при разрушении других ядер возникают едва переносимые боли (например, формируются фантомные боли – боли в отсутствующей конечности).

13) Гипоталамо-гипофизарная система. Гипоталамус – центр регуляции эндокринной системы и мотиваций.

Гипоталамус с гипофизом образуют единую гипоталамогипофизарную систему.

Гипоталамус. От гипоталамуса отходит гипофизарная ножка, на которой висит гипофиз – главная эндокринная железа. Гипофиз регулирует работу других эндокринных желез. Гипотпламус связан с гипофизом нервными путями и кровеносными сосудами. Гипоталамус регулирует работу гипофиза, а через него и работу других эндокринных желез. Гипофиз делится на аденогипофиз (железистый) и нейрогипофиз . В гипоталамусе (это не эндокринная железа, это отдел мозга) есть нейросекреторные клетки, в которых секретируются гормоны. Это нервная клетка она может возбуждаться, может тормозиться, и в то же время в ней секретируются гормоны. От нее отходит аксон. А если это гормоны они выделяются в кровь, и затем поступает к органам решения, т. е. к тому органу, работу которого он регулирует. Два гормона:

- вазопрессин – способствует сохранению воды в организме, он действует на почки, при его недостатке возникает обезвоживание;

- окситоцин – вырабатывается здесь же, но в других клетках, обеспечивает сокращение матки при родах.

Гормоны секретируются в гипоталамусе, а выделяются гипофизом. Таким образом, гипоталамус связан с гипофизом нервными путями. С другой стороны: в нейрогипофизе ничего не вырабатывается, сюда гормоны приходят, но в аденогипофизе есть свои железистые клетки, где вырабатывается целый ряд важных гормонов:

- ганадотропный гормон – регулирует работу половых желез;

- тиреотропный гормон – регулирует работу щитовидной железы;

- адренокортикотропный – регулирует работу коркового слоя надпочечника;

- соматотропный гормон, или гормон роста, – обеспечивает рост костной ткани и развитие мышечной ткани;

- меланотропный гормон – отвечает за пигментацию у рыб и амфибий, у человека влияет на сетчатку.

Все гормоны синтезируются из предшественника который называется проопиомелланокортин . Синтезируется большая молекула, которая ферментами расщепляется, и из нее выделяются более мелкие по количеству аминокислот другие гормоны. Нейроэндокринология.

В гипоталамусе имеются нейросекреторные клетки. В них вырабатываются гормоны:

1) АДГ (антидиуретичкеский гормон регулирует кол-во выводимой мочи)

2) окситоцин (обеспечивает сокращение матки при родах).

3) статины

4) либерины

5) тиреотропный гормон влияет на выробатку гормонов щитовидной железы (тироксин, трийодтиронин)

Тиролиберин -> тиреотропный гормон -> тироксин -> трийодтиронин.

Кровеносный сосуд входит в гипоталамус, где разветвляется на капилляры, затем капилляры собираются и этот сосуд проходит через гипофизарную ножку, снова разветвляется в железистых клетках, выходит из гипофиза и выносит с собой все эти гормоны, которые с кровью идут каждый к своей железе. Зачем нужна эта «чудесная сосудистая сеть»? Есть нервные клетки гипоталамуса, которые заканчивается на кровеносных сосудах этой чудесной сосудистой сети. В этих клетках вырабатываются статины и либерины – это нейрогормоны . Статины тормозят выработку гормонов в гипофизе, а либерины ее усиливают. Если избыток гормона роста, возникает гигантизм, это можно остановить с помощью саматостатина. Наоборот: карлику вводят саматолиберин. И видимо к любому гормону есть такие нейрогормоны, но они не все еще открыты. Например, щитовидная железа, в ней вырабатывается тироксин, а для того чтобы регулировать его выработку в гипофизе вырабатывается тиреотропный гормон, а для того чтобы управлять тиреотропным гормоном, тиреостатина не обнаружено, а вот тиролиберин используется прекрасно. Хоть это и гормоны они вырабатываются в нервных клетках, поэтому у них кроме эндокринного воздействия есть широкий спектр внеэндокринных функций. Тиреолиберин называется панактивин , потому, что он повышает настроение, повышает работоспособность, нормализует давление, при травмах спинного мозга ускоряет заживление, единственно его нельзя применять при нарушениях в щитовидной железе.

Ранее рассмотрены функции, связанные с нейросекреторными клетками и клетками, которые вырабатывают нейрофебтиды.

В гипоталамусе вырабатываются статины и либерины, которые включаются в ответную стрэссорную реакцию организма. Если на организм воздействует какой-то вредящий фактор, то организм должен как-то отвечать – это и есть стрессорная реакция организма. Она не может протекать без участия статинов и либеринов, которые вырабатываются в гипоталамусе. Гипоталамус обязательно принимает участие во ответе на стрессорное воздействие.

Следующей функцией гипоталамуса является:

В нем находятся нервные клетки, чувствительные к стероидным гормонам, т. е. половым гормонам и к женским, и к мужским половым гормонам. Эта чувствительность и обеспечивает формирования по женскому или по мужскому типу. Гипоталамус создает условия для мотивации поведения по мужскому или по женскому типу.

Очень важная функция – это терморегуляция, в гипоталамусе находятся клетки, которые чувствительны к температуре крови. Температура тела может меняться в зависимости от окружающей среды. Кровь протекает по всем структурам мозга, но терморецептивные клетки, которые улавливают малейшие изменения температуры, находятся только в гипоталамусе. Гипоталамус включается и организует две ответные реакции организма или теплопродукцию, или теплоотдачу.

Пищевая мотивация. Почему у человека возникает чувство голода?

Сигнальная система – это уровень глюкозы в крови, он должен быть постоянным ~120 миллиграмм % - ов.

Есть механизм саморегуляции: если у нас снижается уровень глюкозы в крови, начинает расщипляться гликоген печени. С другой стороны запасов гликогена бывает недостаточно. В гипоталамусе есть глюкорецептивные клетки, т. е. клетки которые регистрируют уровень глюкозы в крови. Глюкорецептивные клетки образуют центры голода в гипоталамусе. При понижении уровня глюкозы в крови эти клетки, чувствительные к уровню глюкозы в крови, возбуждаются, и возникает ощущение голода. На уровне гипоталамуса возникает только пищевая мотивация – ощущение голода, для поиска пищи должна подключиться кора головного мозга, с ее участием возникает истинная пищевая реакция.

Центр насыщения, тоже находится в гипоталамусе, он тормозит чувство голода, что предохраняет нас от переедания. При разрушении центра насыщения возникает переедание и как следствие - булимия.

В гипоталамусе также находится центр жажды – осморецептивные клетки (осматическое давление зависит от концентрации солей в крови) Осморецептивные клетки регистрируют уровень солей в крови. При повышении солей в крови осморецептивные клетки возбуждаются, и возникает питьевая мотивация (реакция).

Гипоталамус является высшим центром регуляции вегетативной нервной системы.

Передние отделы гипоталамуса в основном регулируют парасимпатическую нервную систему, задние – симпатическую нервную систему.

Гипоталамус обеспечивает только мотивацию а целенаправленное поведение кора больших полушарий.

14) Нейрон – особенности строения и функций. Отличия нейронов от других клеток. Глия, гематоэнцефалический барьер, цереброспинальная жидкость.

I Во-первых, как мы уже отмечали – в их многообразии . Любая нервная клетка состоит из тела – сомы и отростков . Нейроны отличаются:

1. по размерам (от 20 нм до 100 нм) и форме сомы

2. по количеству и степени ветвления коротких отростков.

3. по строению, длине и разветвленности аксонных окончаний (латералей)

4. по числу шипиков

II Отличаются нейроны также по функциям :

а)воспринимающие информацию из внешней среды,

б) передающие информацию на периферию,

в) обрабатывающие и передающие информацию в пределах ЦНС,

г) возбуждающие,

д) тормозные .

III Отличаются по химическому составу : синтезируются разнообразные белки, липиды, ферменты и, главное, - медиаторы .

ПОЧЕМУ, С КАКИМИ ОСОБЕННОСТЯМИ ЭТО СВЯЗАНО?

Такое многообразие определяется высокой активностью генетического аппарата нейронов. Во время нейрональной индукции под влиянием фактора роста нейронов включаются НОВЫЕ ГЕНЫ в клетках эктодермы зародыша, которые характерны только для нейронов. Эти гены обеспечивают следующие особенности нейронов (важнейшие свойства) :

А) Способность воспринимать, обрабатывать, хранить и воспроизводить информацию

Б) ГЛУБОКУЮ СПЕЦИАЛИЗАЦИЮ:

0. Синтез специфических РНК ;

1. Отсутствие редупликации ДНК .

2. Доля генов, способных к транскрипции , составляют в нейронах 18-20%, а в некоторых клетках – до 40% (в других клетках - 2-6%)

3. Способность синтезировать специфические белки (до 100 в одной клетке)

4. Уникальность липидного состава

В) Привилегированность питания => Зависимость от уровня кислорода и глюкозы в крови.

Ни одна ткань в организме не находится в такой драматической зависимости от уровня кислорода в крови: 5-6 мин остановки дыхания и важнейшие структуры мозга погибают и в первую очередь - кора больших полушарий. Снижение уровня глюкозы ниже 0,11% или 80мг% - может наступить гипогликемия и далее - кома.

А с другой стороны, мозг отгорожен от кровотока ГЭБ. Он не пропускает к клеткам то, что могло бы им повредить. Но, к сожалению, далеко не все – многие низкомолекулярные токсичные вещества проходят через ГЭБ. И у фармакологов всегда есть задача: а проходит ли этот препарат через ГЭБ? В одних случаях это необходимо, если речь идет о заболеваниях мозга, в других – безразлично для больного, если препарат не повреждает нервные клетки, а в третьих этого надо избегать. (НАНОЧАСТИЦЫ, ОНКОЛОГИЯ).

Симпатическая НС возбуждается и стимулирует работу мозгового слоя надпочечников – выработка адреналина; в поджелудочной железе – глюкагон – расщепляет гликоген в почках до глюкозы; глюкокартикойды выраб. в корковом слое надпочечников – обеспечивает глюконеогенез – образование глюкозы из …)

И все-таки, при всем разнообразии нейронов их можно разделить на три группы: афферентные, эфферентные и вставочные (промежуточные).

15) Афферентные нейроны, их функции и строение. Рецепторы: строение, функции, формирование афферентного залпа.

На его вентральной поверхности находятся два массивных пучка нервных волокон — ножки мозга, по которым проводятся сигналы из коры в нижележащие структуры мозга.

Рис. 1. Важнейшие структурные образования среднего мозга (поперечный срез)

В среднем мозге присутствуют различные структурные образования: четверохолмие, красное ядро, черная субстанция и ядра глазодвигательного и блокового нервов. Каждое образование выполняет определенную роль и способствует регуляции целого ряда приспособительных реакций. Через средний мозг проходят все восходящие пути, передающие импульсы к таламусу, большим полушариям и мозжечку, и нисходящие пути, проводящие импульсы к продолговатому и спинному мозгу. К нейронам среднего мозга поступают импульсы через спинной и продолговатый мозг от мышц, зрительных и слуховых рецепторов по афферентным нервам.

Передние бугры четверохолмия являются первичными зрительными центрами, и к ним поступает информация от зрительных рецепторов. При участии передних бугров осуществляются зрительные ориентировочные и сторожевые рефлексы путем движения глаз и поворота головы в сторону действия зрительных раздражителей. Нейроны задних бугров четверохолмия образуют первичные слуховые центры и при получении возбуждения от слуховых рецепторов обеспечивают осуществление слуховых ориентировочных и сторожевых рефлексов (у животного напрягаются ушные раковины, оно настораживается и поворачивает голову в сторону нового звука). Ядра задних бугров четверохолмия обеспечивают сторожевую приспособительную реакцию на новый звуковой раздражитель: перераспределение мышечного тонуса, усиление тонуса сгибателей, учащение сокращений сердца и дыхания, повышение артериального давления, т.е. животное подготавливается к защите, бегу, нападению.

Черная субстанция получает информацию с рецепторов мышц и тактильных рецепторов. Она связана с полосатым телом и бледным шаром. Нейроны черной субстанции участвуют в формировании программы действия, обеспечивающей координирование сложных актов жевания, глотания, а также тонуса мышц и двигательных реакций.

Красное ядро получает импульсы с рецепторов мышц, от коры больших полушарий, подкорковых ядер и мозжечка. Оказывает регулирующее влияние на мотонейроны спинного мозга через ядро Дейтерса и руброспиналъный тракт. Нейроны красного ядра имеют многочисленные связи с ретикулярной формацией ствола мозга и совместно с ней регулируют мышечный тонус. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели.

Устранение связи красного ядра с ретикулярной формацией верхней части продолговатого мозга вызывает резкое повышение тонуса разгибательных мышц. Это явление называется децеребрационной ригидностью.

Основные ядра среднего мозга

Название

Функции среднего мозга

Ядра крыши верхнего и нижнего бугорков четверохолмия

Подкорковые центры зрения и слуха, от которых берет начало тектоспинальный путь, посредством которого осуществляются ориентировочные слуховые и зрительные рефлексы

Ядро продольного медиального пучка

Участвует в обеспечении сочетанного поворота головы и глаз на действие неожиданных зрительных раздражителей, а также при раздражении вестибулярного аппарата

Ядра III и IV пар черепно-мозговых нервов

Участвуют в сочетанием движении глаз за счет иннервации наружных мышц глаза, а волокна вегетативных ядер после переключения в цилиарном ганглии иннервируют мышцу, суживающую зрачок и мышцу ресничного тела

Красные ядра

Являются центральным звеном экстрапирамидной системы, поскольку на них заканчиваются пути от мозжечка (tr. cerebellotegmenlalis) и базальных ядер (tr. pallidorubralis) и от этих ядер начинается руброспинальный путь

Черная субстанция

Имеет связь с полосатым телом и корой, участвует в сложной координации движений, регуляции тонуса мышц и позы, а также в согласовании актов жевания и глотания, входит в состав экстрапирамидной системы

Ядра ретикулярной формации

Активирующие и тормозные влияния на ядра спинного мозга и различные зоны коры головною мозга

Серое центральное околоводопроводное вещество

Входит в состав антиноцицептивной системы

Структуры среднего мозга принимают непосредственное участие в интеграции разнородных сигналов, необходимых для координации движений. При непосредственном участии красного ядра, черной субстанции среднего мозга формируется нейронная сеть стволового генератора движений и, в частности, генератора движений глаз.

На основе анализа сигналов, поступающих в стволовые структуры от проприорецепторов, вестибулярной, слуховой, зрительной, тактильной, болевой и других сенсорных систем, в стволовом генераторе движений формируется поток эфферентных двигательных команд, посылаемых в спинной мозг по нисходящим путям: руброспинальному, реткулоспинальному, вестибулоспинальному, тектоспинальному. В соответствии с выработанными в стволе мозга командами становится возможным осуществление не просто сокращения отдельных мышц или мышечных групп, а формирование определенной позы тела, поддержание равновесия тела в различных позах, совершение рефлекторных и приспособительных движений при осуществлении различных видов перемещения тела в пространстве (рис. 2).

Рис. 2. Расположение некоторых ядер в стволе мозга и гипоталамусе (R. Schmidt, G. Thews, 1985): 1 — паравентрикулярное; 2 — дорсомедиальное: 3 — преоптическое; 4 — супраоптическое; 5 — заднее

Структуры стволового генератора движений могут активироваться произвольными командами, которые поступают из моторных областей коры больших полушарий. Их активность может усиливаться или тормозиться сигналами сенсорных систем и мозжечка. Эти сигналы могут модифицировать уже выполняемые моторные программы так, что их исполнение изменяется в соответствии с новыми требованиями. Так, например, приспособление позы к целенаправленным движениям (как и организация подобных движений) возможно только при участии моторных центров коры больших полушарий мозга.

Важную роль в интегративных процессах среднего мозга и его ствола играет красное ядро. Его нейроны непосредственно участвуют в регуляции, распределении тонуса скелетных мышц и движений, обеспечивающих сохранение нормального положения тела в пространстве и принятие позы, создающей готовность к выполнению определенных действий. Эти влияния красного ядра на спинной мозг реализуются через руброспинальный тракт, волокна которого оканчиваются на вставочных нейронах спинного мозга и оказывают возбуждающее влияние на а- и у-мотонейроны сгибателей и тормозят большинством ото нейронов мышц-разгибателей.

Роль красного ядра в распределении тонуса мышц и поддержании позы тела хорошо демонстрируется в условиях эксперимента на животных. При перерезке ствола головного мозга (децеребрации) на уровне среднего мозга ниже красного ядра развивается состояние, называемое децеребрационной ригидностью. Конечности животного становятся выпрямленными и напряженными, голова и хвост запрокинуты к спине. Это положение тела возникает вследствие нарушения баланса между тонусом мышц-антагонистов в сторону резкого преобладания тонуса разгибателей. После перерезки устраняется тормозное действие красного ядра и коры мозга на мышцы- разгибатели и сохраняется неизмененным возбуждающее действие на них ретикулярного и вестибулярного (Дейгерса) ядер.

Децеребрационная ригидность возникает немедленно после пересечения ствола мозга ниже уровня красного ядра. В происхождении ригидности важнейшее значение имеет у-петля. Ригидность исчезает после пересечения задних корешков и прекращения притока афферентных нервных импульсов к нейронам спинного мозга от мышечных веретен.

К происхождению ригидности имеет отношение вестибулярная система. Разрушение латерального вестибулярного ядра устраняет или снижает тонус экстензоров.

В осуществлении интегративных функций структур ствола мозга важную роль играет черная субстанция, которая участвует в регуляции тонуса мышц, позы и движений. Она участвует в интеграции сигналов, необходимых для координации работы множества мышц, участвующих в актах жевания и глотания, влияет на формирование дыхательных движений.

Через черную субстанцию на моторные процессы, инициируемые стволовым генератором движений, оказывают влияние базальные ганглии. Между черной субстанцией и базальными ганглиями существуют двусторонние связи. Имеется пучок волокон, проводящий нервные импульсы от полосатого тела к черной субстанции, и путь, проводящий импульсы в обратном направлении.

Черная субстанция посылает сигналы также к ядрам таламуса, и далее по аксонам нейронов таламуса эти потоки сигналов достигают коры. Таким образом, черная субстанция участвует в замыкании одного из нейронных кругов, по которым циркулируют сигналы между корой и подкорковыми образованиями.

Функционирование красного ядра, черной субстанции и других структур стволового генератора движений контролируется корой мозга. Ее влияние осуществляется как по прямым связям со многими ядрами ствола, так и опосредованно через мозжечок, который посылает пучки эфферентных волокон к красному ядру и другим стволовым ядрам.