Меню
Бесплатно
Главная  /  Кашель у детей  /  Телепортация информации. Всё, что нужно знать про квантовую телепортацию

Телепортация информации. Всё, что нужно знать про квантовую телепортацию

На расстояние около 1200 километров — между землёй и космосом! Исследователи также планируют провести подобные опыты по квантовой телепортации между Землёй и Луной.

Телепортация… Слово из научно-фантастических книг, из историй о космических приключениях, где герои за секунды преодолевают гигантские расстояния с помощью телепорта. Квантовая телепортация не имеет ничего общего с реальным перемещением объектов. В таком случае, что это такое и почему так называется? О квантовой телепортации АиФ.ru рассказал руководитель лаборатории физики Политехнического музея Юрий Михайловский :

— Нужно понимать, что при квантовой телепортации не происходит перемещения объекта из одного места в пространстве в другое — как при телепортации в обычном понимании этого слова. При помощи квантовой телепортации телепортируется, то есть мгновенно перемещается, не сам объект, а состояние этого объекта! Грубо говоря, у нас есть некий предмет, имеющий определённое состояние, и мы с помощью квантовой телепортации можем перенести это состояние в другое место, чтобы там появился объект с такими же свойствами. (В Китае состояние частиц между двумя пунктами на Земле будут передавать с помощью космического спутника, который ради этого эксперимента собираются вывести на орбиту — прим. ред.) Но про объект — условно. Поясню: сейчас мы не умеем передавать состояние сложных объектов. Речь идёт о том, чтобы передать состояние отдельных атомов или фотонов, ничего больше.

Для того чтобы осуществить квантовую телепортацию, нужно создать квантовую запутанную пару. Для простоты будем говорить про одно состояние, состояние спина частицы. Он может находиться в двух состояниях: спин вверх и спин вниз. Эти состояния мы и будем пытаться передать. Итак, мы пытаемся создать так называемую квантовую запутанную пару (обычно это пара световых фотонов). Она устроена таким образом, что у них суммарный спин равен нулю. То есть у одного фотона спин вверх, у другого — вниз, когда мы создаём эту пару, их сумма — ноль. При этом не только мы не знаем, куда фотоны смотрят, но и сами фотоны не знают, в какую сторону направлены их спины. Они находятся в так называемом смешанном состоянии, неопределённом. Может быть, спин вверх, может, вниз, никто не знает, пока не будет проведён акт измерения.

Но у нас есть гарантия, что если мы измерим один спин, и он смотрит вверх, то спин другого фотона смотрит вниз. Теперь возьмём два запутанных фотона и разнесём их на большое расстояние, километр, например. И тут мы берём один из фотонов и измеряем его состояние. Определяем, что у него спин вверх, и в этот момент на расстоянии одного километра спин другого смешанного фотона превращается в состояние со спином вниз. Актом измерения одного фотона мы изменили состояние другого фотона.

Обычно эти два запутанных фотона называют Ансилой и Бобом.

Этот эффект квантовой запутанности используется для телепортации. У нас есть спин, который мы хотели бы телепортировать, его обычно называют Алисой. Так вот, производят измерение суммарного спина Алисы и Ансилы, и в этот момент Боб получает состояние Алисы, или сопряжённое к нему (противоположное). О том, какое именно, мы узнаём из результата измерения. После этого нам необходимо эту информацию передать уже по обычному каналу связи. Надо ли переворачивать Боба или нет.

Если мы, например, передаём состояния 10 спинов, то для завершения телепортации необходимо передать сообщение вида: «Поменять на противоположные состояния 1, 3, 5, 6 и 8».

Как-то так и осуществляется квантовая телепортация.

В июне 2013 года группе физиков под руководством Юджина Ползика удалось провести эксперимент по детерминистской телепортации коллективного спина 10 12 атомов цезия на полметра. Эта работа попала на обложку Nature Physics . Почему это действительно важный результат, в чем заключались экспериментальные сложности и, наконец, что такое «детерминистская квантовая телепортация» «Ленте.ру» рассказал сам профессор и член исполнительного комитета Российского квантового центра (РКЦ) Юджин Ползик.

«Лента.ру»: Что такое «квантовая телепортация»?

Чтобы понять, чем квантовая телепортация отличается от того, что мы видим, например, в сериале Star Trek, нужно понимать одну простую вещь. Наш мир устроен таким образом, что, если мы хотим что-то узнать о чем угодно, то в мельчайших деталях мы всегда будем делать ошибки. Если мы, допустим, возьмем обычный атом, то одновременно измерить скорость движения и позицию электронов в нем не удастся (это то, что называется принципом неопределенности Гейзенберга). То есть нельзя представить результат в виде последовательности нулей и единиц.

В квантовой механике, однако, уместно задать такой вопрос: даже если результат нельзя записать, то, может быть, его все равно можно переслать? Этот процесс пересылки информации за пределами точности, допустимой классическими измерениями, и называется квантовой телепортацией.

Когда впервые появилась квантовая телепортация?

Юджин Ползик, Профессор института Нильса Бора, Университет Копенгагена (Дания), член исполнительного комитета Российского квантового центра

B 1993 году шесть физиков - Беннет, Броссар и другие - написали в Physical Review Letters статью (pdf), в которой и придумали замечательную терминологию для квантовой телепортации. Замечательную еще и потому, что на публику эта терминология с тех пор оказывает исключительно положительное влияние. В их работе протокол передачи квантовой информации был описан чисто теоретически.

В 1997 году была осуществлена первая квантовая телепортация фотонов (на самом деле экспериментов было два - группы Заиллингера и Де Mартини; Заиллингера просто больше цитируют). В работе они телепортировали поляризацию фотонов - направление этой поляризации суть квантовая величина, то есть такая величина, которая принимает различные значения с разной вероятностью. Как оказалось, измерить эту величину нельзя, а вот телепортировать можно.

Тут надо вот что учесть: в экспериментах Заиллингера и Де Mартини телепортация была вероятностной, то есть работала с некоторой вероятностью успеха. Им удалось достичь вероятности не меньше 67 (2/3) процентов - то, что по-русски уместно назвать классическим пределом.

Телепортация, о которой идет речь, получила название вероятностной. В 1998 году мы в Калифорнийском технологическом институте сделали так называемую детерминистскую телепортацию. У нас телепортировались фаза и амплитуда светового импульса. Они, как говорят физики, так же как скорость и местоположение электрона, являются «некоммутирующими переменными», поэтому подчиняются уже упоминавшемуся принципу Гейзенберга. То есть не допускают одновременное измерение.

Атом можно представить себе в виде маленького магнита. Направление этого магнита и есть направление спина. Управлять ориентацией такого «магнита» можно с помощью магнитного поля и света. У фотонов - частиц света - тоже есть спин, который еще называют поляризацией.

В чем разница между вероятностной и детерминистской телепортациями?

Чтобы ее объяснить, сперва надо чуть подробнее поговорить про телепортацию. Представьте, что в пунктах A и B расположены атомы, для удобства - по одной штуке. Мы хотим телепортировать, скажем, спин атома из A в B, то есть привести атом в пункте B в такое же квантовое состояние, что и атом A. Как я говорил уже, для этого одного классического канала связи недостаточно, поэтому потребуются два канала - один классический, другой квантовый. В качестве переносчика квантовой информации у нас выступают кванты света.

Сначала мы пропускаем свет через атом B. Происходит процесс запутывания, в результате чего между светом и спином атома устанавливается связь. Когда свет приходит в А, то можно считать, что между двумя пунктами установился квантовый канал связи. Свет, проходя через A, считывает информацию с атома и после этого свет ловится детекторами. Именно этот момент можно считать моментом передачи информации по квантовому каналу.

Теперь остается передать результат измерений по классическому каналу в B, чтобы там, на основе этих данных, выполнили некоторые преобразования над спином атома (например, поменяли магнитное поле). В результате, в точке B атом получает спиновое состояние атома A. Телепортация завершена.

В реальности, однако, фотоны, путешествуя по квантовому каналу, теряются (например, если этот канал - обычное оптоволокно). Главное отличие между вероятностной и детерминистской телепортациями как раз и заключается в отношении к этим потерям. Вероятностной все равно, сколько там потерялось - если из миллиона фотонов хотя бы один дошел, то уже хорошо. В этом смысле, конечно, она больше подходит для пересылки фотонов на большие расстояния (в настоящее время рекорд составляет 143 километра - прим. «Ленты.ру» ). Детерминистская же телепортация к потерям относится хуже - вообще говоря, чем выше потери, тем хуже качество телепортации, то есть на принимающем конце провода получается не совсем исходное квантовое состояние - но зато она работает каждый раз, когда, если сказать грубо, нажимаешь на кнопку.

Запутанное состояние света и атомов по сути представляет собой запутанное состояние их спинов. Если спины, скажем, атома и фотона запутаны, то измерения их параметров, как говорят физики, коррелируют. Это означает, что, например, если измерение спина фотона показало, что он направлен вверх, то спин атома будет направлен вниз; если спин фотона оказался направлен вправо, то спин атома будет направлен влево и так далее. Фокус заключается в том, что до измерения ни у фотона, ни у атома определенного направления спина нет. Как получается, что, несмотря на это, они коррелируют? Тут как раз и должна начать «кружиться голова от квантовой механики», как говорил Нильс Бор.

Юджин Ползик

И как у них различаются сферы применения?

Вероятностная, как я говорил, подходит для передачи данных на большие расстояния. Скажем, если в будущем мы захотим построить квантовый интернет, то нам потребуется именно телепортация такого типа. Что касается детерминистской, то она может быть полезна для телепортации каких-нибудь процессов.

Тут сразу надо пояснить: сейчас такой прямо уж четкой границы между этими двумя видами телепортации нет. Например, в Российском квантовом центре (и не только в нем), разрабатываются «гибридные» системы квантовых коммуникаций, где частично используется вероятностный, а частично - детерминистский подходы.

В нашей же работе телепортация процесса была такой, знаете, стробоскопической - речь о непрерывной телепортации пока не идет.

То есть это дискретный процесс?

Да. На самом деле телепортация состояния, она, естественно, может произойти только один раз. Одна из вещей, которые квантовая механика запрещает, - это клонирование состояний. То есть если вы телепортировали что-то, то вы это уничтожили.

Расскажите о том, что удалось сделать вашей группе.

У нас был ансамбль атомов цезия, и телепортировали мы коллективный спин системы. Газ у нас находился под воздействием лазера и магнитного поля, поэтому спины атомов были ориентированы примерно одинаково. Неподготовленный читатель может это представлять себе так - наш коллектив есть большая магнитная стрелка.

У стрелки есть неопределенность направления (это и значит, что спины ориентированы «примерно» одинаково), та самая гейзенбергова. Измерить направление этой неопределенности точнее невозможно, а вот телепортировать положение - вполне. Величина этой неопределенности составляет единицу на квадратный корень из числа атомов.

Тут важно сделать вот какое отступление. Моя любимая система - это газ атомов при комнатной температуре. Проблема с этой системой такая: при комнатных температурах квантовые состояния быстро разваливаются. У нас же, однако, эти спиновые состояния живут очень долго. И удалось этого добиться благодаря сотрудничеству с учеными из Санкт-Петербурга.

Они разработали покрытия, которые по-научному называются алкеновыми. По сути это что-то очень похожее на парафин. Если напылить такое покрытие на внутреннюю часть стеклянной ячейки с газом, то молекулы газа летают (со скоростью 200 метров в секунду) и сталкиваются со стенками, но ничего с их спином не происходит. Порядка миллиона столкновений они так могут выдержать. У меня такое визуальное представление этого процесса: покрытие - это как целый лес лиан, очень больших, а спину для того, чтобы испортиться, нужно свой спин кому-то передать. А там это все такое большое и связанное, что передавать некому, поэтому он туда заходит, побарахтается и вылетает обратно, и ничего с ним не происходит. С этими покрытиями мы начали работать лет 10 назад. Сейчас их усовершенствовали и доказали, что с ними можно работать и в квантовой области.

Так вот, вернемся к нашим атомам цезия. Они были при комнатной температуре (это хорошо еще и потому, что алкеновые покрытия высоких температур не выдерживают, а чтобы получить газ, обычно надо что-то испарить, то есть нагреть).

Вы телепортировали спин на полметра. Такое небольшое расстояние - принципиальное ограничение?

Нет, конечно. Как я говорил, детерминистская телепортация не терпит потерь, поэтому лазерные импульсы у нас шли по открытому пространству - если бы мы загоняли их обратно в оптоволокно, то неизменно были бы какие-то потери. Вообще говоря, если там футуризмом заниматься, то вполне можно таким же лучом стрелять в спутник, который будет переправлять сигнал куда надо.

Вы говорили, что в планах у вас непрерывная телепортация?

Да. Только тут непрерывность следует понимать в нескольких смыслах. С одной стороны у нас в работе 10 12 атомов, поэтому дискретность направления коллективного спина настолько крошечная, что можно описывать спин непрерывными переменными. В этом смысле и наша телепортация была непрерывной.

С другой стороны, если процесс меняется во времени, то можно говорить о его непрерывности во времени. Значит, я могу делать следующее. У этого процесса есть, допустим, какая-то временная постоянная - допустим, он происходит за миллисекунды, и вот я взял и разбил его на микросекунды, и «бум» после первой микросекунды телепортировал; потом придется вернуть в начальное состояние.

Каждая такая телепортация, конечно, уничтожает телепортируемое состояние, однако внешнее возбуждение, которое этот процесс вызывает, не трогает. Поэтому по сути мы телепортируем некий интеграл. Этот интеграл мы можем «развернуть» и узнать что-то о внешних возбуждениях. Теоретическая работа, в которой все это предлагается, только что вышла в Physical Review Letters .

На самом деле такое телепортирование туда-сюда можно использовать для очень глубоких вещей. У меня здесь чего-то происходит, и здесь чего-то происходит, и с помощью телепортационного канала я могу симулировать взаимодействие - как будто бы эти два спина, которые никогда между собой не взаимодействовали, в действительности взаимодействуют. То есть такая квантовая симуляция.

А квантовая симуляция - это то, отчего все сейчас прыгают. Вместо того чтобы факторизовать миллионные цифры, можно просто симулировать. Вспомнить тот же D-wave.

Детерминистская телепортация может использоваться в квантовых компьютерах?

Может, но тогда необходимо будет телепортировать кубиты. Тут уже потребуются всякие алгоритмы коррекции ошибок. А их сейчас только начинают разрабатывать.

А. ШИШЛОВА. По материалам журналов "Nature" и "Science news".

В тонких физических экспериментах удалось, кажется, сделать то, что самые смелые фантасты считали не более чем нереалистичной фантастикой: исследуя одну из связанных когда-то частиц, можно мгновенно (со сверхсветовой скоростью!) с любых расстояний получать информацию о состоянии другой частицы.

Герои научно-фантастических фильмов и романов давно освоили телепортацию - удобный способ мгновенного перемещения во времени и в пространстве. Что же касается реальной жизни, то здесь подобное продолжает оставаться лишь мечтой.

Тем не менее еще в 1935 году Альберт Эйнштейн совместно со своими коллегами Б. Подольским и Н. Розеном предложил эксперимент по телепортации если не вещества, то информации. Этот способ сверхсветовой связи получил название "Парадокс ЭПР".

Суть парадокса состоит в следующем. Есть две частицы, которые какое-то время взаимодействуют, образуя единую систему. С позиций квантовой механики эту связанную систему можно описать некоей волновой функцией. Когда взаимодействие прекращается и частицы разлетаются очень далеко, их по-прежнему будет описывать та же функция. Но состояние каждой отдельной частицы неизвестно в принципе: это вытекает из соотношения неопределенностей. И только когда одна из них попадает в приемник, регистрирующий ее параметры, у другой появляются (именно появляются, а не становятся известными!) соответствующие характеристики. То есть возможна мгновенная "пересылка" квантового состояния частицы на неограниченно большое расстояние. Телепортации самой частицы, передачи массы при этом не происходит.

Похожим образом ведет себя разорвавшийся на две части снаряд: если до взрыва он был неподвижен, суммарный импульс его осколков равен нулю. "Поймав" один осколок и измерив его импульс, можно мгновенно назвать величину импульса второго осколка, как бы далеко он ни улетел.

Сегодня по крайней мере две научные группы - австрийские исследователи из университета в Инсбруке и итальянские из университета "La Sapienza" в Риме - утверждают, что им удалось осуществить телепортацию характеристик фотона в лабораторных условиях.

Эксперименты в Инсбруке передавали "послания" в виде поляризации фотона ультрафиолетового излучения. Этот фотон взаимодействовал в оптическом смесителе с одним из пары связанных фотонов. Между ними в свою очередь возникала квантово-механическая связь, приводящая к поляризации новой пары. Таким образом экспериментаторы добились очень интересного результата: они научились связывать фотоны, не имеющие общего происхождения. Это открывает возможность для проведения целого класса принципиально новых экспериментов.

В результате измерения второй фотон первоначальной связанной пары также приобретал некоторую фиксированную поляризацию: копия первоначального состояния "фотона-посланника" передавалась удаленному фотону. Наиболее сложно было доказать, что квантовое состояние действительно телепортировано: для этого необходимо точно знать, как установлены детекторы при измерении общей поляризации, и потребовалось тщательно синхронизовать их.

Вместо того чтобы использовать отдельный "фотон-посланник", итальянские исследователи предложили рассматривать одновременно две характеристики каждой связанной частицы: поляризацию и направление движения. Это позволяет теоретически описывать их как отдельные частицы и в то же самое время, проводя измерения только с первой частицей, получать характеристики второй, не трогая ее, - осуществлять телепортацию.

Достигнув успехов в телепортации фотонов, экспериментаторы уже планируют работы с другими частицами - электронами, атомами и даже ионами. Это позволит передавать квантовое состояние от короткоживущей частицы к более стабильной. Таким способом можно будет создавать запоминающие устройства, где информация, принесенная фотонами, хранилась бы на ионах, изолированных от окружающей среды.

После создания надежных методов квантовой телепортации возникнут реальные предпосылки для создания квантовых вычислительных систем (см. "Наука и жизнь" № 6, 1996 г.). Телепортация обеспечит надежную передачу и хранение информации на фоне мощных помех, когда все другие способы оказываются неэффективными, и может быть использована для связи между несколькими квантовыми компьютерами. Кроме того, и сами разработанные исследователями методы имеют огромное значение для будущих экспериментов по квантовой механике, для проверки и уточнения целого ряда современных физических теорий.

Такую машину-телепорт построили в фильме «Контакт». С ее помощью героиня Джоди Фостер совершила путешествие в другой мир, а может — и нет…

В фантастических мирах, придуманных писателями и сценаристами, телепортация давно стала стандартной транспортной услугой. Кажется, сложно найти настолько же быстрый, удобный и в то же время интуитивно понятный способ перемещения в пространстве.

Красивую идею телепортации поддерживают и ученые: еще основатель кибернетики Норберт Винер в своей работе «Кибернетика и общество» посвятил «возможности путешествовать при помощи телеграфа» целую главу. С тех пор прошло полвека, и за это время мы почти вплотную приблизились к мечте человечества о таких путешествиях: в нескольких лабораториях мира осуществлена успешная квантовая телепортация.

Основы

Почему телепортация именно квантовая? Дело в том, что квантовые объекты (элементарные частицы или атомы) обладают специфическими свойствами, которые обусловлены законами квантового мира и в макромире не наблюдаются. Именно такие свойства частиц и послужили основой экспериментов по телепортации.

ЭПР-парадокс

В период активного развития квантовой теории, в 1935 году, в знаменитой работе Альберта Эйнштейна, Бориса Подольского и Натана Розена «Может ли квантово-механическое описание реальности быть полным?» был сформулирован так называемый ЭПР-парадокс (парадокс Эйнштейна-Подольского-Розена).

Авторы показали, что из квантовой теории следует: если есть две частицы A и B с общим прошлым (разлетевшиеся после столкновения или образовавшиеся при распаде некоторой частицы), то состояние частицы B зависит от состояния частицы A и эта зависимость должна проявляться мгновенно и на любом расстоянии. Такие частицы называют ЭПР-парой и говорят, что они находятся в «запутанном» состоянии.

Прежде всего напомним, что в квантовом мире частица — это объект вероятностный, то есть она может находиться в нескольких состояниях одновременно — например, может быть не просто «черной» или «белой», а «серой». Однако при измерении такой частицы мы всегда увидим только одно из возможных состояний — «черное» или «белое», причем с определенной предсказуемой вероятностью, а все остальные состояния при этом разрушатся. Более того, из двух квантовых частиц можно создать такое «запутанное» состояние, что все будет еще интереснее: если одна из них окажется при измерении «черной», то другая — непременно «белой», и наоборот!

Чтобы разобраться, в чем же заключается парадокс, сначала проведем опыт с макроскопическими объектами. Возьмем два ящика, в каждом из которых лежат по два шара — черный и белый. И отвезем один из этих ящиков на Северный полюс, а другой на Южный.

Если мы вынем на Южном полюсе один из шаров (например, черный), то это никак не повлияет на результат выбора на Северном полюсе. Совершенно не обязательно, что там нам в этом случае попадется именно белый шар. Этот простой пример подтверждает, что наблюдать ЭПР-парадокс в нашем мире невозможно.

Но в 1980 году Алан Аспект экспериментально показал, что в квантовом мире ЭПР-парадокс действительно имеет место. Специальные измерения состояния ЭПР-частиц A и B показали, что ЭПР-пара не просто связана общим прошлым, но частица B каким-то образом мгновенно «узнает» о том, как была измерена частица A (какую ее характеристику измеряли) и какой получился результат. Если бы речь шла об упомянутых выше ящиках с четырьмя шарами, то это означало бы, что вынув на Южном полюсе черный шар, на Северном полюсе мы непременно должны вынуть белый! Но ведь взаимодействия между A и B нет и сверхсветовая передача сигнала невозможна! В последующих экспериментах существование ЭПР-парадокса подтверждалось, даже если частицы ЭПР-пары были удалены друг от друга на расстояние порядка 10 км.

Эти совершенно невероятные с точки зрения нашей интуиции опыты легко объясняются квантовой теорией. Ведь ЭПР-пара как раз представляет собой две частицы в «запутанном» состоянии, а значит, результат измерения, например, частицы A определяет результат измерения частицы B.

Интересно, что Эйнштейн считал им же предсказанное поведение частиц в ЭПР-парах «действием демонов на расстоянии» и был уверен, что ЭПР-парадокс лишний раз демонстрирует несостоятельность квантовой механики, которую ученый отказывался принимать. Он полагал, что объяснение парадокса неубедительно, ведь «если согласно квантовой теории наблюдатель создает или может частично создавать наблюдаемое, то мышь может переделать Вселенную, просто посмотрев на нее».

Эксперименты по телепортации

В 1993 году Чарльз Беннет и его коллеги придумали, как можно использовать замечательные свойства ЭПР-пар: они изобрели способ переноса квантового состояния объекта на другой квантовый объект с помощью ЭПР-пары и назвали этот способ квантовой телепортацией. А в 1997 году группа экспериментаторов под руководством Антона Цайлингера впервые осуществила квантовую телепортацию состояния фотона. Схема телепортации подробно описана на врезке.

Ограничения и разочарования

Принципиально важно, что квантовая телепортация — это перенос не объекта, а только неизвестного квантового состояния одного объекта на другой квантовый объект. Мало того, что квантовое состояние телепортируемого объекта так и остается для нас тайной, оно к тому же необратимо разрушается. Но в чем мы можем быть совершенно уверены, так это в том, что получили идентичное состояние другого объекта в другом месте.

Тех, кто рассчитывал, что телепортация будет мгновенной, ждет разочарование. В способе Беннета для успешной телепортации необходим классический канал связи, а значит, и скорость телепортации не может превышать скорость передачи данных по обычному каналу.

И пока совершенно неизвестно, удастся ли перейти от телепортации состояний частиц и атомов к телепортации макроскопических объектов.

Применение

Практическое применение для квантовой телепортации нашлось быстро — это квантовые компьютеры, где информация хранится в виде набора квантовых состояний. Тут квантовая телепортация оказалась идеальным способом передачи данных, который принципиально исключает возможность перехвата и копирования передаваемой информации.

Дойдет ли очередь до человека?

Несмотря на все современные достижения в области квантовой телепортации, перспективы телепортации человека остаются весьма туманными. Конечно, хочется верить, что ученые что-нибудь придумают. Еще в 1966 году в книге «Сумма технологии» Станислав Лем писал: «Если нам удастся синтезировать из атомов Наполеона (при условии, что в нашем распоряжении имеется его «поатомная опись»), то Наполеон будет живым человеком. Если снять подобную опись с любого человека и передать ее «по телеграфу» на приемное устройство, аппаратура которого на основе принятой информации воссоздаст тело и мозг этого человека, то он выйдет из приемного устройства живым и здоровым».

Однако практика в этом случае намного сложнее теории. Так что нам с вами вряд ли придется попутешествовать по мирам с помощью телепортации, а тем более — с гарантированной безопасностью, ведь достаточно одной ошибки и можно превратиться в бессмысленный набор атомов. Вот опытный галактический инспектор из романа Клиффорда Саймака знает в этом толк и не зря считает, что «те, кто берется за передачу материи на расстояние, должны бы прежде научиться делать это как положено».

Ключевое исследование, доказывающее принципиальную возможность квантовой телепортации фотонов.

Это необходимо для фундаментального физического обоснования принципиальной возможности дистантной трансляции генетико-метаболической информации с помощью поляризованных (спинирующих) фотонов. Доказательство, применимое как для трансляции in vitro (с помощью лазера), так и in vivo, т.е. в самой биосистеме между клетками.

Экспериментальная квантовая телепортация

Экспериментально продемонстрирована квантовая телепортация – передача и восстановление на любой произвольной дистанции состояния квантовой системы. В процессе телепортации первичный фотон поляризуется, и эта поляризация является передаваемым дистантно состоянием. При этом пара спутанных фотонов является объектом измерения, в котором второй фотон спутанной пары может находиться произвольно далеко от начального. Квантовая телепортация будет ключевым элементом в сетях квантового компьютинга.

Мечта о телепортации – это мечта о способности к путешествию путем простого появления на некотором расстоянии. Объект телепортации может быть полностью охарактеризован по своим свойствам классической физикой путем измерений. Для того, чтобы на некотором расстоянии сделать копию этого объекта нет необходимости передавать туда его части или фрагменты. Все, что необходимо для такой передачи – это снятая с объекта полная информация о нем, которая может использоваться для воссоздания объекта. Но насколько точна должна быть эта информация для генерации точной копии оригинала? Что если эти части и фрагменты будут представлены электронами, атомами и молекулами? Что произойдет с их индивидуальными квантовыми свойствами, которые, в соответствии с принципом неопределенности Гейзенберга, не могут быть измерены с произвольной точностью?
Беннет и др. доказали, что возможна передача квантового состояния одной частицы на другую, т.е. процесс квантовой телепортации, которая не обеспечивает передачу любой информации об этом состоянии в процессе передачи. Эта трудность может быть устранена, если использовать принцип спутывания (entanglement), как особого свойства квантовой механики . Оно отображает корреляции между квантовыми системами существенно более строго, чем это могут делать любые классические корреляции. Возможность передачи квантовой информации – одна из базовых структур волновой квантовой коммуникации и квантового компьютинга . Хотя и существует быстрый прогресс в описании квантового информационного процессинга, трудности в управлении квантовыми системами не позволяют делать адекватные подвижки в экспериментальной реализации новых предложений. Не обещая быстрых успехов в квантовой криптографии (первичные соображения по передаче секретных данных), ранее мы только успешно доказали возможность квантового плотного кодирования , как пути квантово-механического усиления сжатия данных. Основная причина такого медленного экспериментального прогресса в том, что хотя и существуют методы генерации пар спутанных фотонов , спутанные состояния для атомов только начинают изучаться и они не более возможны, чем спутанные состояния для двух квантов.
Здесь мы публикуем первую экспериментальную проверку квантовой телепортации. Путем создания пар спутанных фотонов с помощью процесса параметрической даун-конверсии, а также путем двухфотонной интерферометрии для анализа процесса спутывания, мы можем передать квантовые свойства (в нашем случае состояние поляризации) с одного фотона на другой. Методы, развитые в этом эксперименте, будут иметь большое значение как для исследований в области квантовой коммуникации, так и для будущих экспериментов по фундаментальным основам квантовой механики.