Меню
Бесплатно
Главная  /  Заболевания  /  Факторы определяющие реологические свойства крови. Реологические свойства крови и их нарушения при интенсивной терапии. Что такое число Рейнольдса

Факторы определяющие реологические свойства крови. Реологические свойства крови и их нарушения при интенсивной терапии. Что такое число Рейнольдса

Реологические свойства крови (определяющие ее текучесть) могут существенно меняться в различных участках кровеносного русла, на что оказывают значительное влияние гидродинамические факторы и геометрия сосудистого русла.

Текучесть крови определяется в основном динамической вязкостью крови. Плазма крови обладает большей вязкостью, чем вода (примерно в 1,8 раза), из-за содержания в ней белков, главным образом глобулина и фибриногена. Вязкость цельной крови примерно в 3 раза больше, чем плазмы, и возрастает по мере увеличения количества эритроцитов. При этом в некоторых случаях вязкость крови с меньшим гематокритом может превысить вязкость крови с большим гематокритом, но с меньшим содержанием в ней белков (Din- tenfass L., 1962).

Поток крови неоднороден и состоит из слоев эритроцитов, лейкоцитов, тромбоцитов, белковых молекул, а также молекул воды, электролитов и др. Трение между отдельными слоями различно, что предопределяет различную вязкость крови при изменении ее состава. Кровь характеризуется большей вязкостью при малых скоростях движения, низком давлении, а также в условиях гипотермии. Вязкость крови снижается с уменьшением диаметра сосудов, однако в капиллярах она возрастает. Тем не менее эритроцит деформируется и в физиологических условиях легко проходит через капилляр, даже если его диаметр превышает диаметр капилляра. При этом, действуя как поршень, эритроцит способствует обновлению жидкости и других диффундирующих веществ, находящихся вдоль стенок капилляров. Вязкость в капиллярах возрастает при прохождении по ним как гранулоцитов, жесткость и диаметр которых больше, чем у эритроцитов (Adel R.

Et al., 1970), так и более ригидных и вязких макрофагов (Roser В., Din- tenfass L., 1966).

При снижении скорости кровотока в системе микроциркуляции на уровне венул и мелких вен происходит образование эрит-

I И M III I . 11 111 Мл.1 ІОН l|поверхностных контакти) и иоарагта ние вязкости крови. В физиологических условиях агрегаты легко распадаются при увеличении скорости кровотока. Снижение скорости кровотока в системе микроциркуляции при шоке более выражено, продолжительно и образование эритроцитарных агрегатов приобретает генерализованный характер, чему способствует также изменение свойств эритроцитов (объема, формы, внутренней среды, метаболизма) и окружающей их среды (Селезнев С. А., Вашетина С. М., Мазуркевич Г. С., 1976). Агрегация эритроцитов может способствовать развитию диссеминированного внутрисосудистого свертывания крови, но может являться и следствием его.

Нарушения реологических свойств крови у пострадавших с шоком (травматическим, геморрагическим, септическим и кар- диогенным) характеризуются фазностью развития: первоначальное увеличение вязкости крови по мере развития шока сменяется ее снижением. Выраженное уменьшение вязкости крови свидетельствует о глубоких и стойких нарушениях в микроциркуля- торном русле (стаз и секвестрация крови, развитие плазмотока) и наиболее характерно для терминальных состояний, рефрактерных к реанимационным мероприятиям (Радзивил Г. Г., Минс- кер Г. Д., 1985).

Еще по теме ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ:

  1. ИЗМЕНЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ КРОВИ И НЕКОТОРЫХ ПОКАЗАТЕЛЕЙ ОБМЕНА ВЕЩЕСТВ ПРИ АНАФИЛАКСИИ
  2. ОРГАНИЗАЦИЯ ПОМОЩИ НОВОРОЖДЕННЫМ В РОССИЙСКОЙ ФЕДЕРАЦИИ. Показатели, характеризующие работу неонатологической службы
  3. Текущие изменения морфологического и биохимического состава крови. Референтные величины (показатели нормы) морфологического и биохимического состава крови (табл. 7.5-7.12)
  4. Особенности показателей периферической крови у недоношенных детей
  5. ГЛАВА2 Возрастные особенности показателей периферическом крови у здоровых детей
  6. Показатели текущего и срочного функционального состояния сердечнососудистой системы. Базовые гемодинамические показатели

Реология (от греч. rheos - течение, поток, logos - учение) -это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических особенностей крови как вязкой жидкости.

Вязкость (внутреннее трение) жидкости - свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой. Вязкость жидкости обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. Наличие вязкости приводит к диссипации энергии внешнего источника, вызывающего движение жидкости, и переходу ее в теплоту. Жидкость без вязкости (так называемая идеальная жидкость) является абстракцией. Всем реальным жидкостям присуща вязкость. Основной закон вязкого течения был установлен И. Ньютоном (1687 г.) - формула Ньютона:

где F [Н] - сила внутреннего трения (вязкости), возникающая между слоями жидкости при сдвиге их относительно друг друга; η [Па·с] - коэффициент динамической вязкости жидкости, характеризующий сопротивление жидкости смещению ее слоев; dV/dZ - градиент скорости, показывающий, на сколько изменяется скорость V при изменении на единицу расстояния в направлении Z при переходе от слоя к слою, иначе -скорость сдвига; S [м 2 ] - площадь соприкасающихся слоев.

Сила внутреннего трения тормозит более быстрые слои и ускоряет более медленные слои. Наряду с коэффициентом динамической вязкости рассматривают так называемый коэффициент кинематической вязкости ν=η / ρ (ρ - плотность жидкости). Жидкости делятся по вязким свойствам на два вида: ньютоновские и неньютоновские.

Ньютоновской называется жидкость, коэффициент вязкости которой зависит только от ее природы и температуры. Для ньютоновских жидкостей сила вязкости прямо пропорциональна градиенту скорости. Для них непосредственно справедлива формула Ньютона, коэффициент вязкости в которой является постоянным параметром, не зависящим от условий течения жидкости.

Неньютоновской называется жидкость, коэффициент вязкости которой зависит не только от природы вещества и температуры, но также и от условий течения жидкости, в частности от градиента скорости. Коэффициент вязкости в этом случае не является константой вещества. При этом вязкость жидкости характеризуют условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (например, давление, скорость). Зависимость силы вязкости от градиента скорости становится нелинейной: ,

где n характеризует механические свойства при данных условиях течения. Примером неньютоновских жидкостей являются суспензии. Если имеется жидкость, в которой равномерно распределены твердые невзаимодействующие частицы, то такую среду можно рассматривать как однородную, т.е. мы интересуемся явлениями, характеризующимися расстояниями, большими по сравнению с размером частиц. Свойства такой среды в первую очередь зависят от η жидкости. Система же в целом будет обладать уже другой, большей вязкостью η 4 , зависящей от формы и концентрации частиц. Для случая малых концентраций частиц С справедлива формула:

η΄=η(1+KC) (2),

где К - геометрический фактор - коэффициент, зависящий от геометрии частиц (их формы, размеров). Для сферических частиц К вычисляется по формуле: К=2,5(4/3πR 3)

Для эллипсоидов К увеличивается и определяется значениями его полуосей и их соотношениями. Если структура частиц изменится (например, при изменении условий течения), то и коэффициент К, а следовательно, и вязкость такой суспензии η΄ также изменится. Подобная суспензия представляет собой неньютоновскую жидкость. Увеличение вязкости всей системы связано с тем, что работа внешней силы при течении суспензий затрачивается не только на преодоление истинной (неньютоновской) вязкости, обусловленной межмолекулярным взаимодействием в жидкости, но и на преодоление взаимодействия между ней и структурными элементами.

Кровь - неньютоновская жидкость . В наибольшей степени это связано с тем, что она обладает внутренней структурой, представляя собой суспензию форменных элементов в растворе - плазме. Плазма - практически ньютоновская жидкость . Поскольку 93 % форменных элементов составляют эритроциты, то при упрощенном рассмотрении кровь - это суспензия эритроцитов в физиологическом растворе. Характерным свойством эритроцитов является тенденция к образованию агрегатов. Если нанести мазок крови на предметный столик микроскопа, то можно видеть, как эритроциты "склеиваются" друг с другом, образуя агрегаты, которые получили название монетных столбиков. Условия образования агрегатов различны в крупных и мелких сосудах. Это связано в первую очередь с соотношением размеров сосуда, агрегата и эритроцита (характерные размеры: d эр =8мкм, d агр =10 d эр)

Здесь возможны варианты:

1. Крупные сосуды (аорта, артерии): d сос > d агр, d сос > d эр.

а) Эритроциты собираются в агрегаты - «монетные столбики». Градиент dV/dZ небольшой, этом случае вязкость крови η = 0,005 Па с.

2. Мелкие сосуды (мелкие артерии, артериолы): d сос ≈ d агр, d сос ≈ (5-20)d эр.

В них градиент dV/dZ значительно увеличивается и агрегаты распадаются на отдельные эритроциты, тем самым уменьшая вязкость системы. Для этих сосудов, чем меньше диаметр просвета, тем меньше вязкость крови. В сосудах диаметром около 5d э p вязкость крови составляет примерно 2/3 вязкости крови в крупных сосудах.

3. Микрососуды (капилляры): , d сос < d эр.

В живом сосуде эритроциты легко деформируются, становясь похожими на купол, и проходят, не разрушаясь, через капилляры даже диаметром 3 мкм. В результате поверхность соприкосновения эритроцитов со стенкой капилляра увеличивается по сравнению с недеформированным эритроцитом, способствуя обменным процессам.

Если предположить, что в случаях 1 и 2 эритроциты не деформируются, то для качественного описания изменения вязкости системы можно применить формулу (2), в которой можно учесть различие геометрического фактора для системы из агрегатов (К агр) и для системы отдельных эритроцитов (К эр): К агр ≠ К эр, обусловливающее различие вязкости крови в крупных и мелких сосудах.

Для описания процессов в микрососудах формула (2) не применима, так как в этом случае не выполняются допущения об однородности среды и твердости частиц.

Таким образом, внутренняя структура крови, а следовательно, и ее вязкость, оказывается неодинаковой вдоль кровеносного русла в зависимости от условий течения. Кровь является неньютоновской жидкостью. Зависимость силы вязкости от градиента скорости для течения крови по сосудам не подчиняется формуле Ньютона (1) и является нелинейной.

Вязкость, характерная для течения крови в крупных сосудах: в норме η кр = (4,2 - 6) η в; при анемии η ан = (2 - 3) η в; при полицитемии η пол =(15-20) η в. Вязкость плазмы η пл = 1,2 η эр. Вязкость воды η в = 0,01 Пуаз (1 Пуаз = 0,1 Па с).

Как и у любой жидкости, вязкость крови возрастает при снижении температуры. Например, при уменьшении температуры с 37° до 17° вязкость крови возрастает на 10 % .

Режимы течения крови . Режимы течения жидкости разделяют на ламинарное и турбулентное. Ламинарное течение - это упорядоченное течение жидкости, при котором она перемещается как бы слоями, параллельными направлению течения (рис. 9.2, а). Для ламинарного течения характерны гладкие квазипараллельные траектории. При ламинарном течении скорость в сечении трубы изменяется по параболическому закону:

где R - радиус трубы, Z - расстояние от оси, V 0 - осевая (максимальная) скорость течения.

С увеличением скорости движения ламинарное течение переходит в турбулентное течение, при котором происходит интенсивное перемешивание между слоями жидкости, в потоке возникают многочисленные вихри различных размеров. Частицы совершают хаотические движения по сложным траекториям. Для турбулентного течения характерно чрезвычайно нерегулярное, беспорядочное изменение скорости со временем в каждой точке потока. Можно ввести понятие об осредненной скорости движения, получающейся в результате усреднения по большим промежуткам времени истинной скорости в каждой точке пространства. При этом существенно изменяются свойства течения, в частности, структура потока, профиль скоростей, закон сопротивления. Профиль осредненной скорости турбулентного течения в трубах отличается от параболического профиля ламинарного течения более быстрым возрастанием скорости у стенок и меньшей кривизной в центральной части течения (рис. 9.2, б). За исключением тонкого слоя около стенки, профиль скорости описывается логарифмическим законом. Режим течения жидкости характеризуется числом Рейнольдса Re. Для течения жидкости в круглой трубе:

где V - скорость течения, средняя по поперечному сечению, R -радиус трубы.

Рис. 9.2.Профиль осредненных скоростей при ламинарном (а) и турбулентном (б) течениях

Когда значение Re меньше критического Re K ≈ 2300, имеет место ламинарное течение жидкости, если Re > Re K , то течение становится турбулентным. Как правило, движение крови по сосудам является ламинарным. Однако в ряде случаев возможно возникновение турбулентности. Турбулентное движение крови в аорте может быть вызвано прежде всего турбулентностью кровотока у входа в нее: вихри потока уже изначально существуют, когда кровь выталкивается из желудочка в аорту, что хорошо наблюдается при доплер-кардиографии. У мест разветвления сосудов, а также при возрастании скорости кровотока (например, при мышечной работе) течение может стать турбулентным и в артериях. Турбулентное течение может возникнуть в сосуде в области его локального сужения, например, при образовании тромба.

Турбулентное течение связано с допонительной затратой энергии при движении жидкости, поэтому в кровеносной системе это может привести к дополнительной нагрузке на сердце. Шум, возникающий при турбулентном течении крови, может быть использован для диагностики заболеваний. При поражении клапанов сердца возникают так называемые сердечные шумы, вызванные турбулентным движением крови.

Конец работы -

Эта тема принадлежит разделу:

Биофизика мембран

Лекция.. тема биологические мембраны структура свойства.. биофизика мембран важнейший раздел биофизики клетки имеющий большое значение для биологии многие жизненные..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Биофизика мышечного сокращения
Мышечная активность - это одно из общих свойств высокоорганизованных живых организмов. Вся жизнедеятельность человека связана с мышечной активностью. Независимо от назначения, особе

Структура поперечно-полосатой мышцы. Модель скользящих нитей
Мышечная ткань представляет собой совокупность мышечных клеток (волокон), внеклеточного вещества (коллаген, эластин и др.) и густой сети нервных волокон и кровеносных cocyдов. Мышцы по строению дел

Биомеханика мышцы
Мышцы можно представить как сплошную среду, то есть среду, состоящую из большого числа элементов, взаимодействующих между собой без соударений и находящихся в поле внешних сил. Мышца одновременно о

Уравнение Хилла. Мощность одиночного сокращения
Зависимость скорости укорочения от нагрузки Р является важнейшей при изучении работы мышцы, так как позволяет выявить закономерности мышечного сокращения и его энергетики. Она была подробно изучена

Электромеханическое сопряжение в мышцах
Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом

Основные законы гемодинамики
Гемодинамика - один из разделов биомеханики, изучающий законы движения крови по кровеносным сосудам. Задача гемодинамики - установить взаимосвязь между основными гемодинамическими показателями, а т

Биофизические функции элементов сердечно-сосудистой системы
В 1628 г. английский врач В. Гарвей предложил модель сосудистой системы, где сердце служило насосом, прокачивающим кровь по сосудам. Он подсчитал, что масса крови, выбрасываемой сердцем в артерии в

Кинетика кровотока в эластичных сосудах. Пульсовая волна. Модель Франка
Одним из важных гемодинамических процессов является распространение пульсовой волны. Если регистрировать деформации стенки артерии в двух разноудаленных от сердца точках, то окажется, что

Фильтрация и реабсорбция жидкости в капилляре
При филътрационно-реабсорбционных процессах вода и растворенные в ней соли проходят через стенку капилляра благодаря неоднородности ее структуры. Направление и скорость движения воды через различны

Информация и принципы регуляции в биологических системах
Биологическая кибернетика является составной частью биофизики сложных систем. Биологическая кибернетика имеет большое значение для развития современной биологии, медицины и экологии

Принцип автоматической регуляции в живых системах
Управление (регулирование) - процесс изменения состояния или режима функционирования системы в соответствии с поставленной перед ней задачей. Всякая система содержит управляющую час

Информация. Информационные потоки в живых системах
Информация (от лат. informatio – разъяснение, осведомление) - это один из широко используемых на сегодня терминов, которые употребляет человек в процессе деятельности. Создаются информационн

Биофизика рецепций
РЕЦЕПЦИЯ (от лат. receptio - принятие): в физиологии - осуществляемое рецепторами восприятие энергии раздражителей и преобразование ее в нервное возбуждение (Большой энциклопедический словарь).

Обоняние
[рисунок обонятельного центра]

Фоторецепторы
С помощью глаз мы получаем до 90% информации об окружающем мире. Глаз способен различать свет, цвет, движение, способен оцениать скорость передвижения. Максимальная концентрация светочувствительных

Биофизика отклика
Генерация рецепторного потенциала. Свет поглощается белком родопсином, бесцветным белком, который, по сути, является комплексом белка опсина и ретиналя (имеющего розовую окраску). Ретиналь может на

Биосфера и физические поля
Биосфера Земли, в том числе и человек, развивались и существуют под постоянным действием потоков электромагнитных волн и ионизирующих излучений. Естественный радиоактивный фон и фон электромагнитны

Человек и физические поля окружающего мира
Понятие «физические поля окружающего мира», является широким и может включать в себя многие явления зависимости от целей и контекста рассмотрения. Если рассматривать его в строго фи

Взаимодействие электромагнитных излучений с веществом
При прохождении ЭМ волны через слой вещества толщиной х интенсивность волны I уменьшается вследствие взаимодействия ЭМ поля с атомами и молекулами вещества. Эффекты взаимодействия могут быть различ

Дозиметрия ионизирующих излучений
К ионизирующим излучениям относятся рентгеновское и γ-излучение, потоки α-частиц, электронов, позитронов, а также потоки нейтронов и протонов. Действие ионизирующих излучений на

Естественный радиоактивный фон Земли
На биосферу Земли непрерывно действует космическое излучение, а также потоки α- и β-частиц, γ-квантов в результате излучения различных радионуклидов, рассеянных в зем

Нарушения естественного радиоактивного фона
Нарушения радиоактивного фона в локальных условиях и тем более глобальные опасны для существования биосферы и могут привести к непоправимым последствиям. Причиной увеличения радиоактивного фона явл

Электромагнитные и радиоактивные излучения в медицине
Электромагнитные волны и радиоактивные излучения сегодня широко используются в медицинской практике для диагностики и терапии. Радиоволны применяются в аппаратах УВЧ и СВЧ-физиотерапии. Де

Электромагнитные поля
Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение - включая рентгеновское и γ-кванты - не зарегистриро

Акустические поля
Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в

Низкочастотные электрические и магнитные поля
Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающим

Электромагнитные волны СВЧ-диапазона
Интенсивность излучения волн СВЧ-диапазона за счет теплового движения ничтожна. Эти волны в теле человека затухают слабее, чем инфракрасное излучение. Поэтому с помощью приборов для измерения слабы

Применение СВЧ-радиометрии в медицине
Основными сферами практического применения СВЧ-радиометрии в настоящее время представляются диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а так

Оптическое излучение тела человека
Оптическое излучение тела человека надежно регистрируется с помощью современной техники счета фотонов. В этих устройствах используют высокочувствительные фотоэлектронные умножители (ФЭУ), способные

Акустические поля человека
Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.

Областью механики, изучающей особенности деформации и течения реальных сплошных сред, одни из представителей которых - неньютоновские жидкости, имеющие структурную вязкость, выступает реология. В данной статье рассмотрим реологические свойства станет понятно.

Определение

Типичная неньютоновская жидкость - это кровь. Плазмой ее называют, если она лишена форменных элементов. Кровяной сывороткой является плазма, в которой отсутствует фибриноген.

Гемореология, или реология, изучает механические закономерности, в особенности как изменяются физколлоидные свойства крови при циркуляции с различной скоростью и на разных участках русла сосудов. Ее свойства, кровеносного русла, сократительная способность сердца определяют движение крови в организме. Когда линейная скорость течения мала, кровяные частицы смещаются параллельно оси сосуда и друг к другу. В таком случае у потока слоистый характер, а течение называется ламинарным. Так в чем же заключаются реологические свойства? Об этом - далее.

Что такое число Рейнольдса?

В случае увеличения линейной скорости и превышения определенной величины, различной для всех сосудов, ламинарное течение превратится в вихревое, беспорядочное, называемое турбулентным. Скорость перехода ламинарного движения в турбулентное определяет число Рейнольдса, составляющее для кровеносных сосудов приблизительно 1160. По данным о числах Рейнольдса, турбулентность может быть только в тех местах, где ветвятся крупные сосуды, а также в аорте. По многим сосудам жидкость движется ламинарно.

Скорость и напряжение сдвига

Не только объемная и линейная скорость кровотока имеют значение, еще два важных параметра характеризуют движение к сосуду: скорость и напряжение сдвига. Напряжением сдвига характеризуется сила, действующая на единицу сосудистой поверхности в тангенциальном направлении к поверхности, измеряемая в паскалях или дин/см 2 . Скорость сдвига измеряют в секундах обратных (с-1), а означает она величину градиента скорости движения между движущимися параллельно слоями жидкости на единицу расстояния между ними.

От каких показателей зависят реологические свойства?

Отношение напряжения к скорости сдвига определяет вязкость крови, измеряемую в мПас. У цельной жидкости вязкость зависит от диапазона скорости сдвига 0,1-120 с-1 . Если скорость сдвига >100 с-1 , вязкость изменяется не так выраженно, а по достижении скорости сдвига 200 с-1 почти не меняется. Величина, измеренная при высокой скорости сдвига, называется асимптотической. Принципиальные факторы, которые влияют на вязкость, - это деформируемость элементов клеток, гематокрит и агрегация. А с учетом того, что эритроцитов по сравнению с тромбоцитами и лейкоцитами гораздо больше, их в основном определяют красные клетки. Это отражается на реологических свойствах крови.

Факторы вязкости

Самый главный определяющий вязкость фактор - объемная концентрация эритроцитов, их средний объем и содержание, это называется гематокритом. Он составляет приблизительно 0,4-0,5 л/л и определяется центрифугированием из пробы крови. Плазма - это жидкость ньютоновская, вязкость которой определяет состав белков, и зависит она от температуры. На вязкость больше всего влияют глобулины и фибриноген. Некоторые исследователи считают, что более важный фактор, который ведет к изменению вязкости плазмы, - это соотношения белков: альбумин/фибриноген, альбумин/глобулины. Увеличение происходит при агрегации, определяемое неньютоновским поведением цельной крови, что обусловливает агрегационная способность эритроцитов. Агрегация эритроцитов физиологическая является обратимым процессом. Вот что это такое - реологические свойства крови.

Образование эритроцитами агрегатов зависит от факторов механических, гемодинамических, электростатических, плазменных и других. В наше время существует несколько теорий, которые объясняют механизм эритроцитной агрегации. Наиболее известна сегодня теория мостикового механизма, по которой мостики из крупномолекулярных белков, фибриногена, Y-глобулинов адсорбируются на поверхности эритроцитов. Сила агрегации чистая - это разность между сдвиговой силой (вызывает дезагрегацию), слой электростатического отталкивания эритроцитов, которые заряжены отрицательно, силой в мостиках. Механизм, отвечающий за фиксацию отрицательно заряженных макромолекул на эритроцитах, то есть Y-глобулина, фибриногена, пока еще не совсем понятен. Существуем мнение, что молекулы сцепляются благодаря дисперсным силам Ван-дер-Ваальса и слабых водородных связей.

Что помогают оценить реологические свойства крови?

По какой причине происходит агрегация эритроцитов?

Объяснение агрегации эритроцитов также объясняют истощением, отсутствием высокомолекулярных белков близко к эритроцитам, в связи с чем появляется взаимодействие давления, по природе схожее с давлением макромолекулярного раствора осмотическим, приводящим к сближению частиц суспендированных. К тому же существует теория, связывающая агрегацию эритроцитов с эритроцитарными факторами, приводящими к уменьшению дзета-потенциала и изменению метаболизма и формы эритроцитов.

Из-за взаимосвязи вязкости и агрегационной способности эритроцитов, чтобы оценить реологические свойства крови и особенности движения ее по сосудам, нужно провести комплексный анализ данных показателей. Один из самых распространенных и вполне доступных методов для измерения агрегации - это оценка скорости эритроцитной седиментации. Однако традиционный вариант этого теста малоинформативен, поскольку в нем не учитываются реологические характеристики.

Методы измерения

Согласно исследованиям реологических кровяных характеристик и факторов, которые на них влияют, можно заключить, что на оценку реологических свойств крови влияет агрегационное состояние. В наше время исследователи уделяют больше внимания на изучение микрореологических свойств этой жидкости, однако и вискозиметрия также актуальности не утратила. Основные методы для измерения свойств крови можно условно разделить на две группы: с полем напряжений и деформаций однородным - конусплоскость, дисковые, цилиндрические и прочие реометры, имеющие различную геометрию рабочих частей; с полем деформаций и напряжений относительно неоднородным - по регистрационному принципу акустических, электрических, механических колебаний, приборы, которые работают по методу Стокса, капиллярные вискозиметры. Так измеряются реологические свойства крови, плазмы и сыворотки.

Два типа вискозиметров

Самое большое распространение сейчас имеют два типа и капиллярные. Также применяются вискозиметры, внутренний цилиндр которых плавает в жидкости, которая испытывается. Сейчас активно занимаются различными модификациями ротационных реометров.

Заключение

Стоит также отметить, что заметный прогресс развития реологической техники как раз и позволяет изучать биохимические и биофизические свойства крови, чтобы управлять микрорегуляцией при метаболических и гемодинамических расстройствах. Тем не менее актуальна на данный момент разработка методов для анализа гемореологии, которые бы объективно отражали агрегационные и реологические свойства ньютоновской жидкости.

Курс лекций по реаниматологии и интенсивной терапии Владимир Владимирович Спас

Реологические свойства крови.

Реологические свойства крови.

Кровь – суспензия клеток и частиц, взвешенных в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока.

Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствуют нарушению реологических свойств крови.

Гематокрит – один из важных показателей, связанных с вязкостью крови. Чем выше гематокрит, тем больше вязкость крови и хуже ее реологические свойства. Геморрагия, гемодилюция и, наоборот, плазмопотеря и дегидратация значительно отражаются на реологических свойствах крови. Поэтому, например, управляемая гемодилюция является важным средством профилактики реологических расстройств при оперативных вмешательствах. При гипотермии вязкость крови возрастает в 1,5 раза по сравнению с таковой при 37 С, но, если снизить гематокрит с 40% до 20%, то при таком перепаде температур вязкость не изменится. Гиперкапния повышает вязкость крови, поэтому она в венозной крови меньше, чем в артериальной. При снижении рН крови на 0,5 (при высоком гематокрите) вязкость крови увеличивается втрое.

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

2. Понятие о системе крови, ее функции и значение. Физико-химические свойства крови Понятие системы крови было введено в 1830-х гг. Х. Лангом. Кровь – это физиологическая система, которая включает в себя:1) периферическую (циркулирующую и депонированную) кровь;2) органы

Из книги Медицинская физика автора Вера Александровна Подколзина

ЛЕКЦИЯ № 17. Физиология крови. Иммунология крови 1. Иммунологические основы определения группы крови Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов –

автора Марина Геннадиевна Дрангой

Из книги Общая хирургия автора Павел Николаевич Мишинькин

52. Гомеостаз и оргуинохимические свойства крови Гомеостаз представляет собой совокупность жидкостей организма, омывающих все органы и ткани и принимающих участие в обменных процессах, и включает плазму крови, лимфу, межтканевую, синовиальную и цереброспинальную

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

17. Переливание крови. Групповая принадлежность крови Гемотрансфузия является одним из часто и эффективно применяющихся способов при лечении хирургических больных. Необходимость переливания крови возникает в разнообразных ситуациях.Наиболее частой из них является

Из книги Пропедевтика детских болезней: конспект лекций автора О. В. Осипова

3. Исследование артериального пульса. Свойства пульса в норме и патологии (изменение ритма, частоты, наполнения, напряжения, формы волны, свойства сосудистой стенки) Пульс представляет собой колебания стенок артериальных сосудов, связанные с поступлением во время

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

ЛЕКЦИЯ № 14. Особенности периферической крови у детей. Общий анализ крови 1. Особенности периферической крови у детей раннего возраста Состав периферической крови в первые дни после рождения значительно изменяется. Сразу после рождения красная кровь содержит

Из книги Судебная медицина. Шпаргалка автора В. В. Баталина

ЛЕКЦИЯ № 9. Переливание крови и ее компонентов. Особенности гемотрансфузионной терапии. Групповая принадлежность крови 1. Переливание крови. Общие вопросы гемотрансфузии Гемотрансфузия является одним из часто и эффективно применяющихся способов при лечении

Из книги Всё, что нужно знать о своих анализах. Самостоятельная диагностика и контроль за состоянием здоровья автора Ирина Станиславовна Пигулевская

ЛЕКЦИЯ № 10. Переливание крови и ее компонентов. Оценка совместимости крови донора и реципиента 1. Оценка результатов, полученных при исследовании крови на принадлежность к группе по системе АВО Если гемагглютинация происходит в капле с сыворотками I (О), III (В), но не

Из книги Бахчевые культуры. Сажаем, выращиваем, заготавливаем, лечимся автора Николай Михайлович Звонарев

53. Установление наличия крови на вещественных доказательствах. Судебно-медицинское исследование крови Установление наличия крови. Пробы на кровь делятся на две большие группы: предварительные (ориентировочные) и достоверные (доказательные).Предварительных проб

Из книги Восстановление щитовидной железы Руководство для пациентов автора Андрей Валерьевич Ушаков

Клинический анализ крови (общий анализ крови) Один из самых часто применяемых анализов крови для диагностики различных заболеваний. Общий анализ крови показывает: количество эритроцитов и содержание гемоглобина, скорость оседания эритроцитов (СОЭ), количество

Из книги Учимся понимать свои анализы автора Елена В. Погосян

Из книги Мой малыш родится счастливым автора Анастасия Такки

Фильм «Анализ крови» или «Как самостоятельно научиться понимать Анализ крови» В «Клинике доктора А. В. Ушакова» специально для пациентов создан научно-популярный фильм. Он позволяет пациентам самостоятельно научиться понимать результаты Анализа крови. В фильме

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Глава 7. Газы крови и кислотно-щелочное равновесие Газы крови: кислород (02) и углекислый газ (С02) Перенос кислорода Для выживания человек должен быть способен поглощать кислород из атмосферы и транспортировать его клеткам, где он используется в метаболизме. Некоторые

Из книги автора

Кровь. Какая стихия гуляет по венам? Как по группе крови определить характер человека. Астрологическое соответствие по группе крови. Существует четыре группы крови: I, II, III, IV. По мнению ученых, по крови можно определить не только состояние здоровья человека и

Из книги автора

Объем и физико-химические свойства крови Объем крови – общее количество крови в организме взрослого человека составляет в среднем 6 – 8% от массы тела, что соответствует 5–6 л. Повышение общего объема крови называют гиперволемией, уменьшение – гиповолемией.Относительная

Кровь - особая жидкая ткань организма, в которой форменные элементы свободно взвешены в жидкой среде. Кровь как ткань, обладает следующими особенностями: 1) все её составные части образуются за пределами сосудистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении. Основными функциями крови являются транспортная, защитная и регуляторная. Все три функции крови связаны между собой и неотделимы друг от друга. Жидкая часть крови - плазма - имеет связь со всеми органами и тканями и отражает происходящие в них биохимические и биофизические процессы. Количество крови у человека в нормальных условиях составляет от 1/13 до 1/20 части от общей массы (3-5 л.). Цвет крови зависит от содержания в ней оксигемоглобина: артериальная кровь ярко-красная (богата оксигемоглобином), а венозная темно-красная (бедная оксигемоглобином). Вязкость крови в среднем в 5 раз превышает вязкость воды. Поверхностное натяжение меньше натяжения воды. В составе крови 80% - воды, 1% - неорганические вещества (натрий, хлор, кальций), 19% - органические вещества. Плазма крови содержит 90% воды, удельный вес ее составляет 1030, ниже, чем у крови (1056-1060). Кровь как коллоидная система обладает коллоидно­осмотическим давлением, т. е. способна удерживать определенное количество воды. Это давление определяется дисперсностью белков, концентрацией соли и другими примесями. Нормальное коллоидно-осмотическое давление составляет около 30 мм. вод. ст. (2940 Па). Форменными элементами крови являются эритроциты, лейкоциты и тромбоциты. В среднем 45% крови составляют форменные элементы, а 55% плазма. Форменные элементы крови представляют собой гетероморфную систему, состоящую из различно дифференцированных в структурно-функциональном отношении элементов. Объединяют их общность гистогенеза и совместное пребывание в периферической крови.

Плазма крови - жидкая часть крови, в которой взвешены форменные элементы. Процентное содержание плазмы в крови составляет 52-60%. Микроскопически представляет собой однородную прозрачную несколько желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.

Плазма крови состоит из воды, в которой растворены вещества - белки (7-8% от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины - 4-5%, глобулины - 3% и фибриноген - 0,2-0,4%. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ. В среднем 1 литр плазмы человека содержит 900-910 г воды, 65-85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH - 7,34-7,43.

Реологические свойства крови.

Кровь - суспензия клеток и частиц, взвешенный в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока. Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствует нарушению реологических свойств крови. Гематокрит - один из важных показателей, связанных с вязкостью крови. Чем выше гематокрит, тем больше вязкость крови и хуже ее реологические свойства. Геморрагия, гемодилюция и, наоборот, плазмопотеря и дегидратация значительно отражаются на реологических свойствах крови. Поэтому, например, управляемая гемодилюция является важным средством профилактики реологических расстройств при оперативных вмешательствах. При гипотермии вязкость крови возрастает в 1,5 раза по сравнению с таковой при 37 град.С, но, если снизить гематокрит с 40% до 20%, то при таком перепаде температур вязкость не изменится. Гиперкапния повышает вязкость крови, поэтому она в венозной крови меньше, чем в артериальной. При снижении рН крови на 0,5 (при высоком гематокрите) вязкость крови увеличивается втрое.

РАССТРОЙСТВА РЕОЛОГИЧЕСКИХ СВОЙСТВ КРОВИ.

Основной феномен реологических расстройств крови - агрегация эритроцитов, совпадающая с повышением вязкости. Чем медленнее поток крови, тем более вероятно развитие этого феномена. Так называемые ложные агрегаты ("монетные столбики") носят физиологический характер и распадаются на здоровые клетки при изменении условий. Истинные агрегаты, возникающие при патологии, не распадаются, порождая явление сладжа (в переводе с английского как "отстой"). Клетки в агрегатах покрываются белковой пленкой, склеивающей их в глыбки неправильной формы. Главным фактором, вызывающим агрегацию и сладж, является нарушение гемодинамики - замедление кровотока, встречающееся при всех критических состояниях - травматическом шоке, геморрагии, клинической смерти, кардиогенном шоке и т.д. Очень часто гемодинамические расстройства сочетаются и с гиперглобулинемией при таких тяжелых состояниях, как перитонит, острая кишечная непроходимость, острый панкреатит, синдром длительного сдавления, ожоги. Усиливают агрегацию состояние жировой, амниотической и воздушной эмболии, повреждение эритроцитов при искусственном кровообращении, гемолиз, септический шок и т.д., то есть все критические состояния. Можно сказать, что основной причиной нарушения кровотока в капилляроне является изменение реологических свойств крови, которые в свою очередь зависят главным образом от скорости кровотока. Поэтому нарушения кровотока при всех критических состояниях проходит 4 этапа. 1 этап - спазм сосудов-сопротивлений и изменение реологических свойств крови. Стрессовые факторы (гипоксия, страх, боль, травма и т.д.) ведут к гиперкатехоламинемии, вызывающей первичный спазм артериол для централизации кровотока при кровопотере или снижении сердечного выброса любой этиологии (инфаркт миокарда, гиповолемия при перитоните, острой кишечной непроходимости, ожогах и т.д.). Сужение артериол сокращает скорость кровотока в капилляроне, что меняет реологические свойства крови и ведет к агрегации клеток сладжу. С этого начинается 2 этап нарушения микроциркуляции, на котором возникают следующие явления: а) возникает ишемия тканей, что ведет к увеличению концентрации кислых метаболитов, активных полипептидов. Однако явление сладжа характерно тем, что происходит расслоение потоков и вытекающая из капиллярона плазма может уносить в общую циркуляцию кислые метаболиты и агрессивные метаболиты. Таким образом функциональная способность органа, где нарушалась микроциркуляция, резко снижается. б) на агрегатах эритроцитов оседает фибрин, вследствие чего возникают условия для развития ДВС-синдрома. в) агрегаты эритроцитов, обволакиваемые веществами плазмы, скапливаются в капилляроне и выключаются из кровотока - возникает секвестрация крови. Секвестрация отличается от депонирования тем, что в "депо" физико-химические свойства не нарушены и выброшенная из депо кровь включается в кровоток вполне физиологически пригодной. Секвестрированная кровь же должна пройти легочной фильтр, прежде чем снова будет соответствовать физиологическим параметрам. Если кровь секвестрируется в большом количестве капилляронов, то соответственно уменьшается ее объем. Поэтому гиповолемия возникает при любом критическом состоянии, даже при тех, которые не сопровождаются первичной крово- или плазмопотерей. II этап реологических расстройств - генерализованное поражение системы микроциркуляции. Раньше других органов страдают печень, почки, гипофиз. Мозг и миокард страдают в последнюю очередь. После того, как секвестрация крови уже снизила минутный объем крови, гиповолемия с помощью дополнительного артериолоспазма, направленного на централизацию кровотока, включают в патологический процесс новые системы микроциркуляции - объем секвестрированной крови растет, вследствие чего ОЦК падает. III этап - тотальное поражение кровообращения, нарушение метаболизма, расстройство деятельности метаболических систем. Подводя итог вышеизложенному, можно выделить при всяком нарушении кровотока 4 этапа: нарушение реологических свойств крови, секвестрация крови, гиповолемия, генерализованное поражение микроциркуляции и метаболизма. Причем в танатогенезе терминального состояния не имеет существенного значения, что же было первичным: уменьшение ОЦК вследствие кровопотери или уменьшение сердечного выброса из-за правожелудочковой недостаточности (острый инфаркт миокарда). при возникновении вышеописанного порочного круга результат гемодинамических нарушений оказывается в принципе одинаковым. Простейшими критериями расстройств микроциркуляции могут служить: уменьшение диуреза до 0,5 мл/мин и менее, разница между накожной и ректальной температурой более 4 град. С, наличие метаболического ацидоза и снижение артерио-венозного различия кислорода - признак того, что последний не поглощается тканями.

Заключение

Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

Кровь - суспензия клеток и частиц, взвешенный в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока.

Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствует нарушению реологических свойств крови.

Список литературы:

1) С.А. Георгиева и др. Физиология. - М.: Медицина, 1981г.

2) Е.Б. Бабский, Г.И. Косицкий, А.Б. Коган и др. Физиология человека. – М.: Медицина, 1984 г.

3) Ю.А. Ермолаев Возрастная физиология. – М.: Высш. Шк., 1985 г.

4) С.Е. Советов, Б.И. Волков и др. Школьная гигиена. – М.: Просвещение, 1967 г.

5) «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001

6) Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. - М.: Медицина.- 2000.- 464 с.: ил.- Учеб. лит. Для слушателей системы последипломного образования.- ISBN 5-225-04560-Х