Меню
Бесплатно
Главная  /  Заболевания  /  Реминерализующая терапия. Поверхностные образования эмали Понятие о проницаемости минерализации деминерализации эмали

Реминерализующая терапия. Поверхностные образования эмали Понятие о проницаемости минерализации деминерализации эмали

Раздел 2. Кариес зубов

001. Са 10 (РО 4)6(ОН) 2 – это

1) карбоапатит

2) хлорапатит

4) витлокит

5) гидроксиапатит
002. Для твердых тканей зуба характерно кальцийфосфорное соотношение

3) 2,1
003. Растворимость гидроксиапатита эмали зубов

при снижении рН ротовой жидкости

1) увеличивается

2) уменьшается

3) не изменяется
004. Микротвердость эмали при кариесе в стадии пятна

1) снижается

2) повышается

3) не изменяется
005. Проницаемость эмали повышена

1) в стадии белого пятна

2) при флюорозе

3) при гипоплазии

4) при истирании
006. Процессы ионного обмена, минерализацию и деминерализацию

обеспечивает

1) микротвердость

2) проницаемость

3) растворимость
007. При кариесе зуба в стадии белого пятна содержание протеина

в теле поражения

1) увеличивается

2) уменьшается

3) не изменяется
008. При кариесе зуба в стадии белого пятна содержание кальция

в теле поражения

1) увеличивается

2) уменьшается

3) не изменяется

009. При кариесе зуба в стадии белого пятна содержание фосфора

в теле поражения

1) увеличивается

2) уменьшается

3) не изменяется
010. При кариесе зуба в стадии белого пятна содержание фтора

в теле поражения

1) увеличивается

2) уменьшается

3) не изменяется
011. Формула гидроксиапатита эмали

1) СаНРОН 4

2) Са 10 (РО 4) 6 (ОН) 2

3) Са 10 (РО 4) 8 (ОН) 2

012. При среднем кариесе зондирование полости болезненно

1) по краю эмали

2) по эмалеводентиновому соединению

3) по дну кариозной полости

013. Ортофосфорная кислота проницаемость эмали

1) повышает

2) понижает

3) не изменяет

014. Фтористый натрий проницаемость эмали

1) повышает

2) понижает

3) не изменяет

015. Физиологический раствор проницаемость эмали

1) повышает

2) понижает

3) не изменяет

016. Молочная кислота проницаемость эмали

1) повышает

2) понижает

3) не изменяет

017. Раствор глюконата кальция проницаемость эмали

1) повышает

2) понижает

3) не изменяет

018. Раствор «Ремодента» проницаемость эмали

1) повышает

2) понижает

3) не изменяет

019. Реминерализация эмали зуба определяется ее

1) микротвердостью

2) проницаемостью

3) растворимостью
020. Наиболее характерный клинический симптом

при кариесе разных стадий – боль

1) самопроизвольная

2) сохраняющаяся после устранения раздражителя

3) только в присутствии раздражителя
021. Полость при поверхностном кариесе локализуется в пределах

2) эмали и дентина


022. Полость при среднем кариесе локализуется в пределах

2) эмали и дентина

3) эмали, дентина и предентина
023. Полость при глубоком кариесе локализуется в преде­лах

2) эмали и дентина

3) эмали, дентина и предентина
024. Методы диагностики кариеса в стадии пятна

1) окрашивание и ЭОД

2) рентгенография и ЭОД

3) рентгенография и термодиагностика

4) термодиагностика и люминесцентная стоматоскопия

5) люминесцентная стоматоскопия и окрашивание
025. Метод витального окрашивания выявляет очаги

деминерализации эмали

1) при эрозии эмали

2) при кариесе в стадии белого пятна

3) при клиновидном дефекте

4) при гипоплазии

5) при кариесе в стадии пигментированного пятна
026. Для витального окрашивания эмали зубов при диагностике кариеса

используют

1) эритрозин

3) метиленовый синий

4) йодистый калий

5) раствор Шиллера–Писарева

027. Реминерализующая терапия предполагает

поступле­ние в очаг деминерализации веществ

1) минеральных

2) органических

028. Глубокий кариес дифференцируют

1) со средним кариесом

2) с хроническим пульпитом

3) с хроническим периодонтитом

4) с флюорозом

029. Протравливание эмали обеспечивает контакт эмали зуба

с композиционным материалом по принципу

1) микросцепления

2) химического взаимодействия

3) адгезии

030. Герметики используют для профилактики

1) кариеса

2) флюороза

3) гипоплазии

031. Для лучшей ретенции композиционного материала

эмаль подготавливают путем

1) фторирования

2) создания фальца

3) кислотного протравливания

032. К реставрационным пломбировочным материалам относятся

1) цинк-эвгеноловая паста

2) стеклоиономерный цемент

3) гидроокись калия

4) композиционные материалы

5) компомеры

033. Перечислите методы пломбирования полостей

1) сэндвич-методика

2) степ-бэк

3) туннельный метод

034. В состав композиционного материала входят

1) ортофосфорная кислота

2) наполнитель

035. Для протравливания эмали перед пломбированием

композиционным материалом используется кислота

1) соляная

2) плавиковая

3) ортофосфорная

036. Стеклоиономерный цемент используется

1) для эстетического пломбирования

2) для пломбирования временных зубов

3) для фиксации штифтовых конструкций

4) для создания культи зуба под коронку
037. К группам композиционных материалов относятся

1) микрофиллы

2) макрофиллы

3) гибридные

4) нейтрофилы
038. К бондинговым системам относятся

1) праймер

2) кислота

3) адгезив

4) полировочная паста
039. Цвет пломбировочного материала для эстетической реставрации

следует выбирать при следующих условиях

1) в темноте на высушенной поверхности зуба

2) при искусственном освещении

после протравливания поверхности зуба кислотой

3) при естественном освещении на влажной поверхности зуба
040. Для реставрации фронтальной группы зубов используется

1) амальгама

2) микронаполненные композиты

3) фосфат цемента

4) дентин паста
041. Для сэндвич-техники пломбирования используется

сочетание материалов

1) фосфат цемент + амальгама

2) стеклоиономерный цемент + композит

3) апексит + дентин паста
042. Для полирования поверхности пломбы из композиционного материала

используют

1) мелкодисперсные алмазные турбинные боры

2) боры Гейтса

3) силиконовые полиры

4) диски SoftLex

5) твердосплавные финиры
043. Для пломбирования полостей 1 и 2 класса по Блэку используют

1) микронаполненные композиты

2) гибридные композиты

3) пакуемые композиты

044. По виду полимеризации композиционные материалы

подразделяются на

1) светоотвердеющие

2) химического отверждения

3) двойного отверждения

4) инфракрасного отверждения
045. В жевательной группе зубов при пломбировании по 2 классу по Блэку

контактный пункт создается

1) плоскостной

2) точечный

3) ступенчатый
046. При нанесении однокомпонентной бондинговой системы

поверхность дентина должна быть

1) пересушена

2) слегка влажная

3) обильно увлажненная
047. Причинами постпломбировочных болей после использования

светоотвердеющих композитов могут быть

1) нанесение бондинга на пересушенный дентин

2) нарушение техники полимеризации

3) использование абразивной пасты при полировке пломбы
Установите соответствие
048. Тип пломбировочного материала Класс по Блэку

1) текучий композит а) 1 (большая полость)

2) пакуемый композит б) 2

3) микронаполненный композит в) 3, 4

г) 5
Укажите правильную последовательность
049. Этапы пломбирования полости композиционными материалами

1) нанесение бондинга

2) нанесение прокладочного материала

3) протравливание эмали

4) полировка пломбы

5) внесение пломбировочного материала
050. Распределить пломбировочные материалы

по мере увеличения их эстетических свойств

1) композиты

2) компомеры

3) стеклоиономеры

Важным свойством эмали, обеспечивающим транспорт веществ, является ее проницаемость. Меченый глицин, введенный внутривенно, обнаруживается во всех тканях зуба. При нанесении его на поверхность зуба через два часа он поступает в дентин. Через эмаль проникают аминокислоты, витамины, ферменты, углеводы. Скорость проникновения различных веществ через эмаль относительно велика. Особенно быстро в эмаль проникают углеводы, органические кислоты (лимонная), бактериальные токсины.Для проницаемости эмали имеют значение ее микропространства, заполненные водой. Транспорт веществ через твердые ткани зуба осуществляется за счет гидростатического давления крови и тканевой жидкости пульпы, термодинамического эффекта, связанного с перепадами температуры, возникающими в полости рта при дыхании и т.д. Осмотические токи возникают вследствие разности осмотического давления в тканевой жидкости пульпы, дентинной, эмалевой и ротовой жидкости. В эмали и дентине существуют также явления электроосмоса, обусловленные электрокинетическими процессами, возникающими на границе твердой и жидкой фазы. В связи с присутствием в эмали жидкости и ионов она обладает электропроводностью, но из-за малых количеств воды она низкая. Хорошо проникают в эмаль отрицательные ионы. Электрофорез способствует активному проникновению кальция в эмаль.

4.Растворимость и реминерализация эмали.

В эмали постоянно идут два процесса - растворение кристаллов гидроксиапатита и их обра­зование, т.е. процессы де- и реминерализации. Они обеспечивают обновление и постоянство состава эмали. Деминерализация проис­ходит под действием органических кислот, а частичное или полное восстановление минеральных компонентов эмали происходит за счет электролитов ротовой жидкости. Реминерализация эмали возможна благодаря способности ГОА к ионному обмену. В естественных условиях источником ионов кальция и фосфора является ротовая жид­кость.

5.Методы исследования проницаемости эмали.

В опыте «in vivo» было показано, что проницаемость эмали, нарушенная после воздействия молочной кислотой, под влиянием ротовой жидкости через 30 сек. полностью восстанавливается. Используя способность ГОА к ионному обмену, можно целенаправ­ленно влиять на состав эмали с помощью специальных минерали­зующих растворов.

Для процессов реминерализации имеет значение концентрация в слюне кальция, фосфора, кислотность и ионная сила слюны. Кальций в слюне находится как в ионизированном (5%), так и в связанном состоянии: с белками - 12%, с цитратом и фосфатом - 30%. Также кальций может связываться в слюне с амилазой, муцином и гликопротеидами.

В отношении солей кальция и фосфора слюна является перена­сыщенным раствором гидроксиапатита . Перенасыщенность слюны препятствует растворению эмали и способствует поступлению в эмаль ионов кальция и фосфора. С уменьшением рН степень пере­насыщения слюны снижается и её минерализующие действие пре­кращается. В норме рН слюны колеблется в широких пределах: от 6,0 до 8,0. Заметный деминерализующий эффект наблюдается при рН ниже 6,0. В кариозных полостях, в осадке слюны, в мягком зубном налете рН опускается ниже 4,0. Снижение рН происходит в результа­те кислотообразующей деятельности микрофлоры, активность кото­рой особенно велика в области спинки языка и контактных поверхно­стей зубов.

Заканчивая рассмотрение функциональных особенностей эмали, кратко сформулируем её основные свойства:

    эмаль характеризуется низким обменом веществ, но обладает достаточной проницаемостью для минеральных компонентов;

    транспорт веществ через эмаль осуществляется одновременно в двух направлениях: с одной стороны он идет из крови через пульпу и дентин, а с другой - из ротовой жидкости, окружающей зубы;

    в эмали постоянно идут процессы обновления и поддержания постоянства её состава за счёт де- и реминерализации. Воснове этих процессов лежат способность кристаллов гидроксиапатита к ионному обмену и способность белков эмали к химической связи с гидроксиапатитом;

    благодаря своему строению и химическому составу, эмаль обладает высокой резистентностью, но её проницаемость может увели­чиваться под действием органических кислот, высокой температуры, при накоплении углеводов, в результате жизнедеятельности микрофлоры полости рта, а также под действием гормонов тирокальцитонина и паротина.

Эмаль- ткань, покрывающая коронку зуба, является самой твердой в организме. На жеват поверхности ее толщ достиг 1,5-1,7 мм, на боковых поверхностях она значительно тоньше и сходит на нет к шейке, в месте соединения с цементом.

*Структура эмали. Основным структ-м образованием эмали явл эмалевые призмы диаметром 4-6 мкм.Длина призмы соотв-т толщине слоя эмали и даже превышает ее благодаря извилистому направлению.Эмалевые призмы,концентрируясь в пучки, образуют S-образные изгибы. Вследствие этого на шлифах эмали выявляется оптическая неоднородность (темные или светлые полосы): в одном участке призмы срезаны в продольном направлении, в другом - в поперечном (полосы Гунтера-Шрегера). Кроме того, на шлифах эмали, особенно после обработки кислотой, видны линии, идущие в косом направлении и достигающие поверхности эмали, так называемые линии Ретциуса. Их образование связывают с цикличностью минерализации эмали в процессе ее развития.
Эмалевая призма имеет поперечную исчерченность, которая отражает суточный ритм осложнений минеральных солей. Сама призма в поперечном сечении, в большинстве случаев, имеет аркадообразную форму или форму чешуи, но может быть полигональной, округлой или гексагональной.
В эмали зуба, кроме указанных образований, встречаются ламеллы, пучки и веретена. Ламеллы (пластинки) проникают в эмаль на значительную глубину, эмалевые пучки - на меньшую. Эмалевые веретена - отростки одонтобластов - проникают в эмаль через дентино-эмалевое соединение.
Основной структурной единицей призмы считаются кристаллы апатитоподобного происхождения, кот плотно прилежат друг к другу, но располаг под углом.Структура кристалла обусл величиной элементарной ячейки.
*Химический состав. Э зубов сост из апатитов многих типов,но осн-м явл гидроксиапатит - Са10(РО4)6(ОН)2. Неорг-е вещество в эмали представлено (%): гидроксиапатитом - 75,04; карбонатапатитом -12,06; хлорапатитом-4,39; фторапатитом-0,63; карбонатом кальция-1,33; карбонатом магния-1,62.В составе химических неорганических соединений кальций составляет 37 %, а фосфор-17 %.
Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под возд-м ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба и, следовательно, о неодинаковой подверженности различных участков поражению кариесом.

Для апатитов, каковыми являются кристаллы эмали зуба, молярное соотношение Са/Р составляет 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения (1,33), так и в сторону увеличения (2,0). При соотношении Са/Р 1,67 разрушение кристаллов происходит при выходе 2 ионов Са2+, при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 Са2+ тогда как при соотношении Са/Р 1,33 его структура разрушается. По существующим представлениям, коэффициент Са/Р можно использовать для оценки состояния эмали зуба.
микроэлементы в эмали располагаются неравномерно. В наружном слое отмечается большое содержание фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются стронций, медь, алюминий, калий.
Каждый кристалл эмали имеет гидратный слой связанных ионов (ОН~), образующихся на поверхности раздела кристалл-раствор. Считают, что благодаря гидратному слою осуществляется ионный обмен, кот может протекать по гетероионному механизму обмена, когда ион кристалла замещается другим ионом среды, и по изоионному-когда ион кристалла замещается таким же ионом раствора.
Кроме связанной воды (гидратная оболочка кристаллов) в эмали имеется свободная вода, расп-ся в микропространствах. Общий объем воды в эмали составляет 3,8 %.Движение жидкости обусловлено капиллярным механизмом, а по жидкости диффундируют молекулы и ионы. Эмалевая жидкость играет биологическую роль не только в период развития эмали, но и в сформированном зубе, обеспечивая ионный обмен.
Органическое вещество эмали представлено белками, липидами и углеводами. В белках эмали определены следующие фракции: растворимая в кислотах и ЭДТА - 0,17 %, нерастворимая - 0,18 %, пептиды и свободные аминокислоты - 0,15 %. По аминокислотному составу эти белки, общее количество кот сост 0,5 %, имеют признаки кератинов. Наряду с белком в эмали обнаружены липиды (0,6 %), цитраты (0,1 %), полисахариды (1,65 мг углеводов на 100 г эмали).
т.о., в составе эмали присутствуют: неорганические вещества -- 95 %, органические - 1,2 % и вода - 3,8 %.

*Функции эмали. Эмаль - это бессосудистая и самая твердая ткань организма-защищает дентин и пульпу от внешних механических, химических и температурных раздражителей. Только благодаря этому зубы выполняют свое назначение - откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.

*Явление проницаемости эмали зуба осуществляется благодаря смыванию зуба (эмали) снаружи ротовой жидкостью, а со стороны пульпы - тканевой и наличию пространств в эмали, заполненных жидкостью.Зубная лимфа может проходить через эмаль, нейтрализуя молочную кислоту и постепенно увеличивая плотность за счет содержащихся в ней минеральных солей.Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. Проницаемость - главный фактор созревания эмали зубов после прорезывания. В зубе проявляются обычные законы диффузии. При этом вода (эмалевая жидкость) проходит со стороны малой молекулярной концентрации в сторону высокой, а молекулы и диссоциированные ионы - со стороны высокой концентрации в сторону низкой. Иначе говоря, ионы кальция перемещаются из слюны, которая пересыщена ими, в эмалевую жидкость, где их концентрация низкая.
В настоящее время имеются бесспорные доказательства проникновения в эмаль и дентин зуба из слюны многих неорганических и органических веществ. Показано, что при нинесении на поверхность интактной эмали раствора радиоактивного кальция он уже через 20 мин обнаруживался в поверхностном слое. При более длительном контакте раствора с зубом радиоактивный кальций проникал на всю глубину эмали до эмалево-дентинного соединения.
Выявленные закономерности проникновения кальция и фосфора в эмаль зуба из слюны послужили теоретической предпосылкой для разработки метода реминерализации эмали, применяемого в настоящее время с целью профилактики и лечения на ранней стадии кариеса.
Уровень проницаемости может изменяться под воздействием ряда факторов. Так, этот показатель снижается с возрастом. Электрофорез, ультразвуковые волны, низкое значение рН усиливают проницаемость эмали. Она увеличивается также под воздействием фермента гиалуронидазы, количество которой в полости рта увеличивается при наличии микроорганизмов, зубного налета. Еще более выраженное изменение проницаемости эмали наблюдается, если к зубному налету имеет доступ сахароза. В значительной мере степень поступления ионов в эмаль зависит от их характеристик. Одновалентные ионы обладают большей проникающей способностью, чем двухвалентные. Важное значение имеют заряд иона, рН среды, активность ферментов и др.

Особого внимания заслуживает изучение распространения в эмали ионов фтора. При аппликации раствора фторида натрия ионы фтора быстро поступают на небольшую глубину (несколько десятков микрометров) и, как считают некоторые авторы, включаются в кристаллическую решетку эмали. Следует отметить, что после обработки поверхности эмали раствором фторида натрия ее проницаемость резко снижается. Этот фактор имеет важное значение для клинической практики, так как определяет последовательность обработки зуба в процессе реминерализующей терапии.
Созревание эмали зуба и моменты фторпрофилактики

Под созреванием подразумевается увеличение содержания кальция, фосфора, фтора и других компонентов и совершенствование структуры эмали зуба.

В эмали после прорезывания зуба происходит накопление кальция и фосфора, наиболее активно - в первый год после прорезывания зуба, когда кальций и фосфор адсорбируются во всех слоях различных зон эмали. В дальнейшем накопление фосфора, а после 3-летнего возраста - кальция, резко замедляется. По мере созревания эмали и увеличения содержания минеральных компонентов растворимость поверхностного слоя эмали, по показателям выхода в биоптат кальция и фосфора, снижается. Установлена обратная зависимость между содержанием кальция и фосфора в эмали и степенью поражения кариесом. Поверхность зуба, где эмаль содержит больше кальция и фосфора, значительно реже поражается кариесом, чем поверхность зуба, эмаль которого содержит меньшее количество этих веществ.
В созревании эмали важная роль принадлежит фтору, количество которого после прорезывания зуба постепенно увеличивается. Добавочное введение фтора снижает растворимость эмали и повышает ее твердость. Из других микроэлементов, влияющих на созревание эмали, следует указать на ванадий, молибден, стронций.

Механизм созревания эмали изучен недостаточно. Считают, что при этом происходят изменения в кристалличгской решетке, уменьшается объем микропространств в вмали, что приводит к увеличению ее плотности. Данные о созревании эмали имеют важное значение в профилак тике кариеса, так как по ним можно определить оптимальные сроки проведения обработки реминерализующими препаратами. При недостатке фтора в питьевой воде именно в период созревания эмали необходимо дополнительное введение фтора как внутрь, так и местно, что может быть осуществлено полосканием фторсодержащими растворами, чисткой зубов фторсодержащими пастами и другими способами.

Размеров и заряда ионов (однозарядные лучше проникают, чем двухзарядные)

Градиента концентрации ионов (проникают только те ионы, концентрация которых в ротовой жидкости больше, чем в эмалевой жидкости)

Проницаемость эмали

Проницаемость эмали - это способность эмали пропускать воду и растворенные в ней, минеральные и органические вещества в двух направ­лениях: от поверхности эмали к дентину и наоборот.

Механизмы проницаемости эмали для неорганических ионов и орга­нических веществ, содержащихся в ротовой жидкости, различны.

Проницаемость для неорганических ионов . Эмаль имеет микропро­странства между призмами и внутри призм, заполненные эмалевой жидкостью. Механизм поступления ионов из ротовой жидкости в эмалевую жидкость по градиенту концентрации путем простой диффузии. Скорость и глубина проникновения ионов в эмалевую жидкость зависят от:

3) способности ионов связываться с компонентами эмали и входить в кристаллическую решетку ГА (хорошо адсорби­рующиеся - медленно диффундируют в глубокие слои эмали, а плохо взаимодействующие с ГА - быстро диффундируют к пульпе и из нее в кровь).

Проницаемость для органических веществ . Низкомолекулярные орга­нические вещества, такие как аминокислоты, глюкоза проходят через эмаль транзитом в дентин по ламеллам - образованиям органической природы. Такие вещества не участвуют в обмене эмали.

1. Степень минерализации эмали - содержание в эмали кальция и фос­фора. Чем больше минерализована эмаль, тем меньше ее проницаемость. Это обусловлено тем, что по мере роста кристаллов ГА, увеличения плот­ности укладки кристаллов уменьшается слой эмалевой жидкости, окру­жающий кристаллы. Это создает механическое препятствие для проникно­вения растворимых в воде веществ.

Деминерализация эмали при патологических процессах, например, при определенной стадии развития кариеса, повышает про­ницаемость эмали.

2. Пелликула - органическая пленка на зубах препятствует поступле­нию веществ в эмаль.

3 .Наличие дефектов в эмали , например, микротрещины увеличивают проницаемость эмали.

4.Физические факторы (ультразвук, электрофорез) увеличивают про­ницаемость.

События после прохождения ионов в эмалевую жидкость

1 .Накопление на поверхности кристаллов ГА. Часть проникающих ионов накапливается в гидратной оболочке, окружающей кристалл ГА. Накопление происходит в течение нескольких минут после входа ионов в эмаль. Накопление обусловлено поверхностным зарядом кристаллов ГА. Заряд возникает вследствие наличия «дефектов» в кристаллической решет­ке. Теоретически состав ГА выражается формулой Са 10 (РО 4) 6 (ОН) 2 , ему соответствует соотношение Са/Р 1,67. Реально это соотношение находится в пределах 1,33 -2,0, то есть на деле состав ГА отличается от теоретического. Так, например, может быть восьмикальциевый апатит. В том месте кристаллической решетки, где присутствует такой апатит имеется отрицательный заряд. 16+ [(PO 4) 6 (OH) 2 ] 20-


2.Проникновение ионов в кристалл. Часть накапливающихся ионов могут зайти в гидратную оболочку и выйти из нее. Однако другие ионы способны проникать в поверхность кристалла. Проникновение зависит от природы, размера, величины заряда иона. Проникают, например, такие ионы как Са 2+ , Sг 2+ , Мg 2+ , Ва 2+ , НРО 4 2- ,F - ,Н + . Проникновение происходит в течение нескольких часов.

3.Внедрение ионов к кристаллическую решетку ГА (внутрикристаллический обмен). Идет в течение многих месяцев. Внедрение в кристаллическую решетку ГА происходит по принципу компенсации за­ряда двумя путями .

1). Занятие ионом вакантных мест в решетке. Так, например, в восьмикальциевый ГА компенсируя избыток отрицательного заряда может встро­иться ион кальция, магния и другие катионы.