Меню
Бесплатно
Главная  /  Заболевания  /  Виды лучевой диагностики заболеваний и как она проводится. Современные методы лучевой диагностики Компьютерная рентгенодиагностика

Виды лучевой диагностики заболеваний и как она проводится. Современные методы лучевой диагностики Компьютерная рентгенодиагностика

Одной из активно развивающихся отраслей современной клинической медицины является лучевая диагностика. Этому способствует постоянный прогресс в области компьютерных технологий и физики. Благодаря высокоинформативным неинвазивным методам обследования, обеспечивающим подробную визуализацию внутренних органов, врачам удается выявлять заболевания на разных стадиях их развития, в том числе и до появления ярко выраженной симптоматики.

Сущность лучевой диагностики

Лучевой диагностикой принято называть отрасль медицины, связанную с применением ионизирующего и неионизирующего излучения с целью обнаружения анатомических и функциональных изменений в организме и выявления врожденных и приобретенных заболеваний. Выделяют такие виды лучевой диагностики:

  • рентгенологическая, подразумевающая использование рентгеновских лучей: рентгеноскопия, рентгенография, компьютерная томография (КТ), флюорография, ангиография;
  • ультразвуковая, связанная с применением ультразвуковых волн: ультразвуковое исследование (УЗИ) внутренних органов в форматах 2D, 3D, 4D, допплерография;
  • магнитно-резонансная, основанная на явлении ядерного магнитного резонанса – способности вещества, содержащего ядра с ненулевым спином и помещенного в магнитное поле, поглощать и излучать электромагнитную энергию: магнитно-резонансная томография (МРТ), магнитно-резонансная спектроскопия (МРС);
  • радиоизотопная, предусматривающая регистрацию излучения, исходящего от радиофармацевтических препаратов, введенных в организм пациента или в биологическую жидкость, содержащуюся в пробирке: сцинтиграфия, сканирование, позитронно-эмиссионная томография (ПЭТ), однофотонная эмиссионная томография (ОФЭКТ), радиометрия, радиография;
  • тепловая, связанная с использованием инфракрасного излучения: термография, тепловая томография.

Современные методы лучевой диагностики позволяют получать плоские и объемные изображения внутренних органов человека, поэтому их называют интраскопическими («intra» – «внутри чего-либо»). Они предоставляют медикам около 90 % информации, необходимой для постановки диагнозов.

В каких случаях противопоказана лучевая диагностика

Исследования такого типа не рекомендуется назначать пациентам, пребывающим в коме и тяжелом состоянии, сочетающемся с лихорадкой (повышенной до 40-41 ̊С температурой тела и ознобом), страдающим от острой печеночной и почечной недостаточности (утраты органами способности в полной мере выполнять свои функции), психических заболеваний, обширных внутренних кровотечений, открытого пневмоторакса (когда воздух во время дыхания свободно циркулирует между легкими и внешней средой через повреждение грудной клетки).

Однако иногда требуется проведение КТ головного мозга по неотложным показаниям, например, пациенту в коме при дифференциальной диагностике инсультов, субдуральных (область между твердой и паутинной мозговыми оболочками) и субарахноидальных (полость между мягкой и паутинной мозговыми оболочками) кровоизлияний.

Все дело в том, что КТ проводится очень быстро, и гораздо лучше «видит» объемы крови внутри черепа.

Это позволяет принять решение о необходимости срочного нейрохирургического вмешательства, а при проведении КТ можно оказывать пациенту реанимационное пособие.

Рентгенологические и радиоизотопные исследования сопровождаются определенным уровнем лучевой нагрузки на организм пациента. Так как доза радиации, хоть и небольшая, способна негативно сказаться на развитии плода, рентгенологическое и радиоизотопное лучевое обследование при беременности противопоказано. Если один из этих видов диагностики назначен женщине в период лактации, ей рекомендуется на 48 часов после процедуры прекратить грудное вскармливание.

Магнитно-резонансные исследования не связаны с радиацией, поэтому разрешены беременным женщинам, но все же их проводят с осторожностью: в ходе процедуры есть риск чрезмерного нагревания околоплодных вод, что может навредить ребенку. То же самое касается и инфракрасной диагностики.

Абсолютным противопоказанием к магнитно-резонансному исследованию является наличие у пациента металлических имплантатов, кардиостимулятора.

Ультразвуковая диагностика противопоказаний не имеет, поэтому разрешена и детям, и беременным. Только больным, у которых имеются повреждения прямой кишки, не рекомендуется проводить трансректальное ультразвуковое исследование (ТРУЗИ).

Где используются лучевые методы обследования

Широкое применение получила лучевая диагностика в неврологии, гастроэнтерологии, кардиологии, ортопедии, отоларингологии, педиатрии и других отраслях медицины. Об особенностях ее использования, в частности, о ведущих инструментальных методах исследования, назначаемых пациентам с целью выявления заболеваний различных органов и их систем, речь пойдет дальше.

Применение лучевой диагностики в терапии

Лучевая диагностика и терапия – тесно связанные друг с другом отрасли медицины. Как свидетельствует статистика, в число проблем, с которыми чаще всего обращаются пациенты к врачам-терапевтам, входят заболевания дыхательной и мочевыводящей систем.

Основным методом первичного обследования органов грудной клетки продолжает оставаться рентгенография.
Это связано с тем, что рентгенологическая лучевая диагностика заболеваний органов дыхания недорогостоящая, быстрая и высокоинформативная.

Независимо от предполагаемого заболевания, сразу делают обзорные снимки в двух проекциях – прямой и боковой во время глубокого вдоха. Оценивают характер затемнения/просветления легочных полей, изменения сосудистого рисунка и корней легких. Дополнительно могут быть выполнены изображения в косой проекции и на выдохе.

Для определения деталей и характера патологического процесса часто назначают рентгенологические исследования с контрастом:

  • бронхографию (контрастирование бронхиального дерева);
  • ангиопульмонографию (контрастное исследование сосудов малого круга кровообращения);
  • плеврографию (контрастирование плевральной полости) и другие методы.

Лучевая диагностика при пневмонии, подозрении на скопление жидкости в плевральной полости или тромбоэмболию (закупорку) легочной артерии, наличие опухолей в зоне средостения и субплевральных отделах легких часто проводится с помощью УЗИ.

Если перечисленные выше способы не позволили обнаружить существенных изменений в легочной ткани, но при этом у пациента наблюдается тревожная симптоматика (одышка, кровохарканье, наличие атипичных клеток в мокроте), назначается КТ легких. Лучевая диагностика туберкулеза легких такого типа позволяет получать объемные послойные изображения тканей и обнаруживать заболевание даже на стадии его зарождения.

Если необходимо исследовать функциональные способности органа (характер вентиляции легких), в том числе и после трансплантации, провести дифференциальную диагностику между добро- и злокачественными новообразованиями, проверить легкие на наличие метастазов рака другого органа, проводится радиоизотопная диагностика (сцинтиграфия, ПЭТ или используются другие методы).

В задачи службы лучевой диагностики, функционирующей при местных и региональных департаментах охраны здоровья, входит контроль соблюдения медицинским персоналом стандартов исследований. Это необходимо, так как при нарушении порядка и периодичности проведения диагностических процедур чрезмерное облучение может стать причиной ожогов на теле, поспособствовать развитию злокачественных новообразований и уродств у детей в следующем поколении.

Если радиоизотопные и рентгенологические исследования выполняются правильно, дозы излучаемой радиации незначительные, неспособные вызывать нарушения в работе организма взрослого человека. Инновационное цифровое оборудование, которое пришло на смену старым рентгеновским аппаратам, позволило существенно снизить уровень лучевой нагрузки. К примеру, доза облучения при маммографии варьируется в диапазоне от 0,2 до 0,4 мЗв (миллизиверта), при рентгене органов грудной клетки – от 0,5 до 1,5 мЗв, при КТ головного мозга – от 3 до 5 мЗв.

Максимально допустимая для человека доза облучения составляет 150 мЗв в год.

Применение рентгеноконтрастных веществ в лучевой диагностике помогает защитить зоны тела, которые не исследуются, от облучения. С этой целью перед рентгеном на пациента надевают свинцовый фартук, галстук. Чтобы радиофармацевтический препарат, введенный в организм перед радиоизотопной диагностикой, не накапливался и быстрее выводился вместе с мочой, больному рекомендуют пить много воды.

Подводя итоги

В современной медицине лучевая диагностика в неотложных состояниях, при выявлении острых и хронических заболеваний органов, обнаружении опухолевых процессов играет ведущую роль. Благодаря интенсивному развитию компьютерных технологий удается постоянно совершенствовать диагностические методики, делая их более безопасными для человеческого организма.

ГУ «Уфимский НИИ глазных болезней» АН РБ, г. Уфа

Открытие рентгеновских лучей положило начало новой эре в медицинской диагностике — эре рентгенологии. Современные методы лучевой диагностики подразделяются на рентгенологический, радионуклидный, магнитно-резонансный, ультразвуковой.
Рентгенологический метод — это способ изучения строения и функции различных органов и систем, основанный на качественном и количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгенологическое исследование может проводиться в условиях естественной контрастности или искусственного контрастирования.
Простой и необременительной для пациента является рентгенография. Рентгенограмма является документом, который можно хранить продолжительное время, использовать для сопоставления с повторными рентгенограммами и предъявлять для обсуждения неограниченному числу специалистов. Показания к рентгенографии должны быть обоснованы, так как рентгеновское излучение сопряжено с лучевой нагрузкой.
Компьютерная томография (КТ) — это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения. Компьютерный томограф способен различать ткани, отличающиеся друг от друга по плотности всего на половину процента. Поэтому компьютерный томограф дает примерно в 1000 раз больше информации, чем обычный рентгеновский снимок. При спиральной КТ излучатель движется по спирали по отношению к телу пациента и захватывает за несколько секунд определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями. Спиральная КТ инициировала создание новых перспективных способов визуализации — компьютерной ангиографии, трехмерного (объемного) изображения органов, и, наконец, так называемой виртуальной эндоскопии, которая стала венцом современной медицинской визуализации.
Радионуклидный метод — это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Индикаторы — радиофармацевтические препараты (РФП) — вводят в организм больного, а затем с помощью приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей. Современными методами радионуклидной диагностики являются сцинтиграфия, однофотонная эмиссионная томография (ОФЭТ) и позитронная эмиссионная томография (ПЭТ), радиография и радиометрия. В основе методов лежит введение РФП, которые испускают позитроны или фотоны. Эти вещества, введенные в человеческий организм, скапливаются в областях увеличенного метаболизма и повышенных кровяных потоков.
Ультразвуковой метод — способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения. Он может зарегистрировать даже незначительные изменения плотности биологических сред. Благодаря этому ультразвуковой метод стал одним из наиболее популярных и доступных исследований в клинической медицине. Наибольшее распространение нашли три метода: одномерное исследование (эхография), двухмерное исследование (сонография, сканирование) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов. При одномерном А-методе отраженный сигнал образует на экране индикатора фигуру в виде пика на прямой линии. Количество и расположение пиков на горизонтальной прямой соответствует расположению отражающих ультразвук элементов объекта. Ультразвуковое сканирование (В-метод) позволяет получать двухмерное изображение органов. Сущность метода заключается в перемещении ультразвукового пучка по поверхности тела во время исследования. Получаемая серия сигналов служит для формирования изображения. Оно возникает на дисплее и может быть зафиксировано на бумаге. Это изображение можно подвергнуть математической обработке, определяя размеры (площадь, периметр, поверхность и объем) исследуемого органа. Допплерография позволяет неинвазивно, безболезненно и информативно регистрировать и оценивать кровоток органа. Доказана высокая информативность цветного допплеровского картирования, которое используют в клинике для изучения формы, контуров и просвета кровеносных сосудов.
Магнитно-резонансная томография (МРТ) — исключительно ценный метод исследования. Вместо ионизирующего излучения используется магнитное поле и радиочастотные импульсы. Принцип действия основан на феномене ядерно-магнитного резонанса. Манипулируя градиентными катушками, создающими небольшие дополнительные поля, можно записывать сигналы от тонкого слоя тканей (до 1 мм) и легко изменять направление среза — поперечный, фронтальный и сагиттальный, получая трехмерное изображение. К основным достоинствам метода МРТ относятся: отсутствие лучевой нагрузки, возможность получать изображение в любой плоскости и выполнять трехмерные (пространственные) реконструкции, отсутствие артефактов от костных структур, высокая разрешающая способность визуализации различных тканей, практически полная безопасность метода. Противопоказанием к проведению МРТ является наличие в организме металлических инородных тел, клаустрофобия, судорожный синдром, тяжелое состояние пациента, беременность и лактация.
Развитие лучевой диагностики играет большую роль и в практической офтальмологии. Можно утверждать, что орган зрения — идеальный объект для КТ ввиду выраженных различий в поглощении излучения в тканях глаза, мышцах, нервах, сосудах и ретробульбарной жировой клетчатке. КТ позволяет лучшим образом изучить костные стенки глазниц, выявить патологические изменения в них. КТ применяют при подозрении на опухоль глазницы, при экзофтальме неясного генеза, травмах, инородных телах глазницы. МРТ дает возможность исследовать глазницу в разных проекциях, позволяет лучше разобраться в структуре новообразований внутри глазницы. Но эта методика противопоказана при попадании металлических инородных тел в глаз.
Основными показаниями к проведению УЗИ являются: повреждения глазного яблока, резкое снижение прозрачности светопроводящих структур, отслойка сосудистой оболочки и сетчатки, наличие инородных внутриглазных тел, опухоли, повреждения зрительного нерва, наличие участков обызвествлений в оболочках глаза и области зрительного нерва, динамическое наблюдение за проводимым лечением, изучение характеристик кровотока в сосудах орбиты, исследования перед МРТ или КТ.
Рентгенографию используют как скрининговый метод при травмах глазницы и поражениях ее костных стенок для выявления плотных инородных тел и определения их локализации, проводят диагностику заболеваний слезных путей. Большое значение имеет метод рентгенологического исследования смежных с глазницей придаточных пазух носа.
Так, в Уфимском научно-исследовательском институте глазных болезней за 2010 год проведено 3116 рентгеновских исследований, в т. ч. пациентам из поликлиники — 935 (34 %), из стационара — 1059 (30 %), из кабинета неотложной помощи — 1122 (36 %). Сделано 699 (22,4 %) специальных исследований, к которым относятся исследование слезоотводящих путей с контрастированием (321), бесскелетная рентгенография (334), выявление локализации инородных тел в орбите (39). Рентгенография органов грудной клетки при воспалительных заболеваниях орбиты и глазного яблока составила 18,3 % (213), а придаточных пазух носа — 36,3 % (1132).

Выводы . Лучевая диагностика является необходимой составной частью клинического обследования больных в офтальмологических клиниках. Многие достижения традиционного рентгенологического исследования все больше отступают перед совершенствующимися возможностями КТ, УЗИ, МРТ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Введение

Лучевая диагностика - наука о применении излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека в целях профилактики и распознавания болезней.

Все излечения, используемые в лучевой диагностики, делят на неионизирующие и ионизирующие.

Неионизирующие излучения - это электромагнитные излучения различной частоты, не вызывающие ионизацию атомов и молекул, т.е. их распада на противоположно заряженные частицы -- ионы. К ним относится тепловое (инфракрасное -- ИК) излучение и резонансное, возникающее в объекте (тело человека), помещенном в стабильное магнитное поле, под действием высокочастотных электромагнитных импульсов. Также относят ультразвуковые волны, представляющие собой упругие колебания среды.

Ионизирующее излучение способно ионизировать атомы окружающей среды, в том числе атомы, входящие в состав тканей человека. Все эти излучения делят на две группы: квантовые (т.е. состоящие из фотонов) и корпускулярные (состоящие из частиц). Это деление в значительной мере условно, так как любое излучение имеет двойственную природу и в определенных условиях проявляет то свойства волны, то свойства частицы. К квантовым ионизирующим излучениям относят тормозное (рентгеновское) излучение и гамма-излучение. К корпускулярным излучениям причисляют пучки электронов, протонов, нейтронов, мезонов и других частиц.

Для получения дифференцированного изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование.

Существуют два способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа - в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды или в клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.

Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип - концентрации и элиминации - используют при рентгенологическом контрастировании выделительной системы и желчных путей.

Основные требования к рентгеноконтрастным веществам очевидны: создание высокой контрастности изображения, безвредность при введении в организм больного, быстрое выведение из организма.

В рентгенологической практике в настоящее время применяют следующие контрастные средства.

1. Препараты сульфата бария(BaSO4). Водная взвесь сульфата бария - основной препарат для исследования пищеварительного канала. Она нерастворима в воде и пищеварительных соках, безвредна. Применяют в видесуспензии в концентрации 1:1 или более высокой -- до 5:1. Для придания препарату дополнительных свойств (замедление оседания твердых частиц бария, повышение прилипаемости к слизистой оболочке) в водную взвесь добавляют химически активные вещества (танин, цитрат натрия, сорбит и др.), для увеличения вязкости -- желатин, пищевую целлюлозу. Существуют готовые официнальные препараты сульфата бария, отвечающие всем перечисленным требованиям.

2. Йодсодержащие растворы органических соединений. Это большая группа препаратов, представляющих собой главным образом производные не которых ароматических кислот -- бензойной, адипиновой, фенилпропионовой и др. Препараты используют для контрастирования кровеносных сосудов и полостей сердца. К ним относятся, например, урографин, тразограф, триомбраст и др. Эти препараты выделяются мочевыводящей системой, поэтому могут быть использованы для исследования чашечно-лоханочного комплекса почек, мочеточников,мочевого пузыря. В последнее время появилось новое поколение йодсодержащих органических соединений -- неионные (сначала мономеры -- омнипак, ультравист, затем димеры -- йодиксанол, йотролан). Их осмолярность значительно ниже, чем ионных, и приближается к осмолярности плазмы крови (300 моем). Вследствие этого они значительно менее токсичны, чем ионные мономеры. Ряд йодсодержащих препаратов улавливается из крови печенью и выводится с желчью, поэтому их применяют для контрастирования желчных путей. С целью контрастирования желчного пузыря применяют йодистые препараты, всасывающиеся в кишечнике (холевид).

3. Иодированные масла. Эти препараты представляют собой эмульсию йодистых соединений в растительных маслах (персиковом, маковом). Они завоевали популярность как средства, используемые при исследовании бронхов, лимфатических сосудов, полости матки, свищевых ходов Особенно хороши ультражидкие йодированные масла (липоидол) которые характеризуются высокой контрастностью и мало раздражают ткани. Иодсодержащие препараты, особенно ионной группы, могут вызывать аллергические реакции и оказывать токсическое воздействие на организм

Общие аллергические проявления наблюдаются со стороны кожи и слизистых оболочек (конъюнктивит, ринит, крапивница, отек слизистой оболочки гортани, бронхов, трахеи), сердечно-сосудистой системы (снижение кровяного давления, коллапс), центральной нервной системы (судороги, иногда параличи), почек (нарушение выделительной функции). Указанные реакции обычно преходящи, но могут достигать высокой степени выраженности и даже привести к смертельному исходу. В связи с этим перед введением в кровь йодсодержащих препаратов, особенно высокоосмолярных из ионной группы, необходимо провести биологическую пробу: осторожно вливают внутривенно 1 мл рентгеноконтрастного препарата и выжидают 2--3 мин, внимательно наблюдая за состоянием больного. Лишь в случае отсутствия аллергической реакции вводят основную дозу, которая при разных исследованиях варьирует от 20 до 100 мл.

4. Газы (закись азота, углекислый газ, обычный воздух). Для введения в кровь можно применять только углекислый газ вследствие его высокой растворимости. При введении в полости тела и клетчаточные пространства также во избежание газовой эмболии используют закись азота. В пищеварительный канал допустимо вводить обычный воздух.

1.Рентгенологические методы

Рентгеновские лучи были открыты 8 ноября 1895г. профессором физики Вюрцбургского университета Вильгельмом Конрадом Рентгеном (1845-1923).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь

Рентгеновские лучи являются одним из видов электромагнитных волн длиной приблизительно от 80 до 10~5 нм., которые в общеволновом спектре занимают место между ультрафиолетовыми лучами и -лучами. Скорость распространения рентгеновских лучей равна скорости света 300 000 км/с.

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1%-- в рентгеновское излучение. Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума. На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка -- небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны -- это и есть место образования рентгеновских лучей. К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5--15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20-140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию. После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс -- на анод, и отрицательный -- на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду -- за счёт такой разности потенциалов достигается высокая скорость движения -- 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия. Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.

Свойства рентгеновских лучей.

1. Проникающая способность; вследствие малой длины волны рентгеновские лучи могут проникать сквозь объекты, непроницаемы для видимого света.

2. Способность поглощаться и рассеиваться; при поглощении часть рентгеновских лучей с наибольшей длинной волны исчезает, полностью передавая свою энергию веществу. При рассеивании - откланяется от первоначального направления, и не несет полезной информации. Часть лучей полностью проходит через объект с изменением своих характеристик. Таким образом, формируется изображение.

3. Вызывают флюоресценцию (свечение). Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

4. Оказывают фотохимическое действие; позволяет регистрировать изображения на фоточувствительных материалах.

5. Вызывают ионизацию вещества. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

6. Распространяются прямолинейно, что позволяет получить рентгеновское изображение, повторяющее форму исследуемого материала.

7. Способны к поляризации.

8. Рентгеновским лучам свойственно дифракция и интерференция.

9. Они невидимы.

Виды рентгенологических методов.

1.Рентгенография (рентгеновская съемка).

Рентгенография - способ рентгенологического исследования, при котором фиксированное рентгеновское изображения объекта получают на твердом насители. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для этого вида исследования. Внутренние стенки кассеты покрыты усиливающими экранами, между которыми и помещается рентгеновская пленка.

Усиливающие экраны содержат люминофор, который под действием рентгеновского излучения светится и, таким образом воздействуя на пленку, усиливает его фотохимическое действие. Основное назначение усиливающих экранов -- уменьшить экспозицию, а значит, и радиационное облучение пациента.

В зависимости от назначения усиливающие экраны делят на стандартные, мелкозернистые (у них мелкое зерно люминофора, пониженная светоотдача, но очень высокое пространственное разрешение), которые применяют в остеологии, и скоростные (с крупными зернами люминофора, высокой светоотдачей, но пониженным разрешением), которые используют при проведении исследования у детей и быстродвижущихся объектов, например сердца.

Исследуемую часть тела помещают максимально близко к кассете, чтобы уменьшить проекционное искажение (в основном увеличение), которое возникает из-за расходящегося характера пучка рентгеновских лучей. Кроме того такое расположение обеспечивает необходимую резкость изображения. Излучатель устанавливают так, чтобы центральный пучок проходил через центр снимаемой части тела и был перпендикулярен пленке. В некоторых случаях, например при исследовании височной кости, применяют наклонное положение излучателя.

Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Методика регистрации рентгеновского излучения.

Схема 1. Условия обычной рентгенографии (I) и телерентгенографии (II):1 - рентгеновская трубка; 2 - пучок рентгеновских лучей;3 - объект исследования; 4 - кассета с пленкой.

Получение изображения основано на ослаблении рентгеновского излучения при его прохождении через различные ткани с последующей регистрацией его на рентгеночувствительную плёнку. В результате прохождения через образования разной плотности и состава пучок излучения рассеивается и тормозится, в связи с чем на пленке формируется изображение разной степени интенсивности. В результате, на плёнке получается усреднённое, суммационное изображение всех тканей (тень). Из этого следует что для получения адекватного рентгеновского снимка необходимо проводить исследование рентгенологически неоднородных образований.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка).

Рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Для рентгенологического анализа изображения рентгеновский снимок фиксируется на подсвечивающем устройстве с ярким экраном -- негатоскопе.

В качестве приемника рентгеновского изображения ранее применяли селеновые пластины, которые перед экспонированием заряжали на специальных аппаратах. Затем изображение переносили на писчую бумагу. Метод получил название электрорентгенографии.

При электронно-оптической цифровой рентгенографии рентгеновское изображение, полученное в телевизионной камере, после усиления поступает на аналого-цифровой. Все электрические сигналы, несущие информацию об исследуемом объекте, превращаются в череду цифр. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. С помощью компьютера можно улучшить качество изображения, повысить его контрастность, очистить от помех, выделить интересующие врача детали или контуры.

К достоинствам цифровой рентгенографии относятся: высокое качество изображения, пониженная лучевая нагрузка, возможность сохранять изображения на магнитных носителях со всеми вытекающими из этого последствиями: удобство хранения, возможность создания упорядоченных архивов с оперативным доступом к данным и передачи изображения на расстояния -- как внутри больницы, так и за ее пределы.

Недостатки рентгенографии: наличие ионизирующего излучения, способного оказать вредное воздействие на пациента; информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами. Без применения контрастирующих веществ рентгенография недостаточно информативна для анализа изменений в мягких тканях, мало отличающихся по плотности (например, при изучении органов брюшной полости).

2.Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание. Его выполняют с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система.

Рентгеноскоп

РЭОП представляет собой вакуумную колбу, внутри которой, с одной стороны, имеется рентгеновский флюоресцентный экран, а с противоположной - катодолюминесцентный экран. Между ними приложено электрическое ускоряющее поле с разницей потенциалов около 25 кВ. Возникающий при просвечивании световой образ на флюоресцентном экране превращается на фотокатоде в поток электронов. Под действием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно возрастает - в несколько тысяч раз. Попадая на катодолюминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение.

Это изображение через систему зеркал и линз передается на передающую телевизионную трубку - видикон. Возникающие в ней электрические сигналы поступают для обработки в блок телевизионного канала, а затем - на экран видеоконтрольного устройства или, проще говоря, на экран телевизора. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

3.Флюорография

Флюорография - метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана или экрана электронно-оптического преобразователя на фотопленку небольшого формата.

Флюорография даёт уменьшенное изображение объекта. Выделяют мелкокадровую (например, 24Ч24 мм или 35Ч35 мм) и крупнокадровую (в частности, 70Ч70 мм или 100Ч100 мм) методики. Последняя по диагностическим возможностям приближается к рентгенографии. Флюорография применяется главным образом для исследования органов грудной клетки, молочных желёз, костной системы.

При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки - флюорограммы получают на специальном рентгеновском аппарате - флюорографе. В этом аппарате имеется флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется посредством фотокамеры на эту рулонную пленку с размером кадра 70X70 или 100Х 100 мм.

На флюорограммах детали изображения фиксируются лучше, чем при рентгеноскопии или рентгенотелевизионном просвечивании, но несколько хуже (на 4-5%) по сравнению с обычными рентгенограммами.

Для проверочных исследований применяют флюорографы стационарного и передвижного типа. Первые размещают в поликлиниках, медико-санитарных частях, диспансерах, больницах. Передвижные флюорографы монтируют на автомобильных шасси или в железнодорожных вагонах. Съемку и в тех и в других флюорографах производят на рулонную пленку, которую затем проявляют в специальных бачках. Для исследования пищевода, желудка и двенадцатиперстной кишки созданы специальные гастрофлюорографы.

Готовые флюорограммы рассматривают на специальном фонаре - флюороскопе, который увеличивает изображение. Из общего контингента обследованных отбирают лиц, у которых по флюорограммам заподозрены патологические изменения. Их направляют для дополнительного обследования, которое проводят на рентгенодиагностических установках с применением всех необходимых рентгенологических методов исследования.

Важные достоинства флюорографии - это возможность обследования большого числа лиц в течение короткого времени (высокая пропускная способность), экономичность, удобство хранения флюорограмм, позволяет рано выявлять минимальные патологические изменения в органах.

Наиболее эффективным оказалось применение флюорографии для выявления скрыто протекающих заболеваний легких, в первую очередь туберкулеза и рака. Периодичность проверочных обследований определяют с учетом возраста людей, характера их трудовой деятельности, местных эпидемиологических условий

4.Томография

Томография (от греч. tomos - слой) - метод послойного рентгенологического исследования.

При томографии, благодаря движению во время съемки с определенной скоростью рентгеновской трубки на пленке получается резким изображение только тех структур, которые расположены на определенной, заранее заданной глубине. Тени органов и образований, расположенных на меньшей или большей глубине, получаются «смазанными» и не накладываются на основное изображение. Томография облегчает выявление опухолей, воспалительных инфильтратов и других патологических образований.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух из трех компонентов рентгеновской системы излучатель--пациент--пленка. Чаще всего перемещаются излучатель и пленка, в то время как пациент остается неподвижным. При этом излучатель и пленка двигаются по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на рентгенограмме оказывается нечетким, размазанным, а резким получается изображение только тех образований, которые находятся на уровне центра вращения системы излучатель--пленка.

Конструктивно томографы выполняют в виде дополнительных штативов либо специального приспособления к универсальному поворотному штативу. Если на томографе изменить уровень центра вращения системы излучатель--пленка, то изменится уровень выделяемого слоя. Толщина выбираемого слоя зависит от амплитуды движения упомянутой выше системы: чем она больше, тем тоньше будет томографический слой. Обычная величина этого угла от 20 до 50°. Если же выбирают очень малый угол перемещения, порядка 3--5°, то получают изображение толстого слоя, по существу целой зоны.

Виды томографии

Линейная томография (классическая томография) -- метод рентгенологического исследования, с помощью которого можно производить снимок слоя, лежащего на определённой глубине исследуемого объекта. Данный вид исследования основан на перемещении двух из трёх компонентов (рентгеновская трубка, рентгеновская плёнка, объект исследования). Наиболее близкую к современной линейной томографии систему предложил Маер, в 1914 году он предложил двигать рентгеновскую трубку параллельно телу больного.

Панорамная томография -- метод рентгенологического исследования, с помощью которого можно получить снимок криволинейного слоя, лежащего на определённой глубине исследуемого объекта.

В медицине панорамная томография используется при исследовании лицевого черепа, в первую очередь при диагностике заболеваний зубочелюстной системы. Используя движение рентгеновского излучателя и кассеты с плёнкой по специальным траекториям выделяется изображение в форме цилиндрической поверхности. Это позволяет получить снимок с изображением всех зубов пациента, что необходимо при протезировании, оказывается полезным при пародонтозе, в травматологии и ряде других случаев. Диагностические исследования выполняют с помощью пантомографических дентальных аппаратов.

Компьютерная томография -- это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта (Пє англ. scan -- бегло просматривать) узким пучком рентгеновского излучения.

Аппарат КТ

Изображения при компьютерной томографии (КТ) получают при помощи узкого вращающегося пучка рентгеновских лучей и системы датчиков, расположенных по кругу, который называется гантри. Проходя через ткани, излучение ослабляется соответственно плотности и атомному составу этих тканей. По другую сторону от пациента установлена круговая система датчиков рентгеновского излучения, каждый из которых преобразует энергию излучения в электрические сигналы. После усиления эти сигналы преобразуются в цифровой код, который поступает в память компьютера. Зафиксированные сигналы отражают степень ослабления пучка рентгеновских лучей в каком-либо одном направлении.

Вращаясь вокруг пациента, рентгеновский излучатель ЃбпросматриваетЃв его тело в разных ракурсах, в общей сложности под углом 360°. К концу вращения излучателя в памяти компьютера оказываются зафиксированными все сигналы от всех датчиков. Продолжительность вращения излучателя в современных томографах очень небольшая, всего 1--3 с, что позволяет изучать движущиеся объекты.

Попутно определяют плотность ткани на отдельных участках, которую измеряют в условных единицах -- единицах Хаунсфилда (HU). За нулевую отметку принята плотность воды. Плотность кости составляет +1000 HU, плотность воздуха равна -1000 HU. Все остальные ткани человеческого тела занимают промежуточное положение (обычно от 0 до 200--300 HU).

В отличие от обычного рентгена, на котором лучше всего видны кости и воздухоносные структуры (легкие), на компьютерной томографии (КТ) отлично видны и мягкие ткани (мозг, печень, и т.д.), это дает возможность диагностировать болезни на ранних стадиях, например, обнаружить опухоль пока она еще небольших размеров и поддается хирургическому лечению.

С появлением спиральных и мультиспиральных томографов появилась возможность проводить компьютерную томографию сердца, сосудов, бронхов, кишечника.

Преимущества рентгеновской компьютерной томографии (КТ):

Ч высокая тканевая разрешающая способность - позволяет оценить изменение коэффициент ослабления излучения в пределах 0,5% (в обычной рентгенографии - 10-20%);

Ч отсутствует наложения органов и тканей - нет закрытых зон;

Ч позволяет оценить соотношение органов исследуемой области

Ч пакет прикладных программ для обработки полученного цифрового изображения позволяет получить дополнительную информацию.

Недостатки компьютерной томографии (КТ):

Ч Всегда существует небольшой риск развития рака от чрезмерного облучения. Однако возможность точной диагностики перевешивает этот минимальный риск.

Абсолютных противопоказаний к компьютерной томографии (КТ) нет. Относительные противопоказания к компьютерной томографии (КТ): беременность и младший детский возраст, что связано с лучевой нагрузкой.

Виды компьютерная томография

Спиральная рентгеновская компьютерная томография (СКТ).

Принцип действия метода.

Спиральное сканирование состоит во вращении по спирали рентгеновской трубки и одновременном движения стола с больным. От обычной КТ спиральная отличается тем, что скорость движения стола может быть различной в зависимости от цели исследования. При более высокой скорости больше зона сканирования. Метод существенно сокращает время процедуры и уменьшает лучевую нагрузку на тело пациента.

Принцип действия спиральной компьютерной томографии на организм человека. Изображения получается при помощи следующих операций: Задается в компьютере нужная ширина рентгеновского луча; Происходит сканирование органа пучком рентгеновского излучения; Датчики ловят импульсы и преобразуют их в цифровую информацию; Информация обрабатывается компьютером; Компьютер выдает информацию на экран в виде изображения.

Преимущества спиральной компьютерной томографии. Увеличение скорости процесса сканирования. Метод увеличивает область изучения за более короткое время. Уменьшение дозы облучения на пациента. Возможность получать более четкое и качественное изображение и выявлять даже самые минимальные изменения в тканях организма. С появлением томографов нового поколения стало доступным исследование сложных областей.

Спиральная компьютерная томография головного мозга с детальной точность показывает сосуды и все составные части мозга. Также новым достижение стала возможность изучать бронхи и легкие.

Мультспиральная компьютерная томография (МСКТ).

В мультиспиральных томографах рентгеновские датчики находятся по всей окружности установки и картинка получается за одно вращение. Благодаря этому механизму шум отсутствует, а время процедуры сокращается, по сравнению с предыдущим видом. Этот способ удобен при обследовании больных, которые не могут долго находиться неподвижно (маленькие дети или пациенты в критическом состоянии). Мультиспиральная является усовершенствованным видом спиральной. Спиральные и мультиспиральные томографы дают возможность выполнять исследования сосудов, бронхов, сердца и кишечника.

Принцип действия мультиспиральной компьютерной томографии. Преимущества метода мультиспиральной КТ.

Ч Высокая разрешающая способность, позволяющая детально рассмотреть даже незначительные изменения.

Ч Быстрота исследования. Сканирование не превышает 20 секунд. Метод хорош для пациентов, неспособных долго сохранять неподвижность и находящихся в критическом состоянии.

Ч Неограниченные возможности для исследований больных в тяжелом состоянии, нуждающихся в постоянном контакте с врачом. Возможность построения двухмерных и трехмерных изображений, позволяющих получать максимально полную информацию об изучаемых органах.

Ч Отсутствие шума при сканировании. Благодаря возможности прибора свершать процесс за один оборот.

Ч Уменьшена доза облучения.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

5.Ангиография

Ангиография -- метод контрастного рентгенологического исследования кровеносных сосудов. Ангиография изучает функциональное состояние сосудов, окольного кровотока и протяженность патологического процесса.

Ангиограмма сосудов головного мозга.

Артериограмма

Артериографию производят путем пункции сосуда или его катетеризации. Пункцию применяют при исследовании сонных артерий, артерий и вен нижних конечностей, брюшной аорты и ее крупных ветвей. Однако основным способом ангиографии в настоящее время является, безусловно, катетеризация сосуда, которую выполняют по методике, разработанной шведским врачом Селъдингером

Чаще всего проводят катетеризацию бедренной артерии.

Все манипуляции при ангиографии осуществляют под контролем рентгенотелевидения. Через катетер в исследуемую артерию автоматическим шприцем (инъектором) под давлением вводят контрастное вещество. В тот же момент начинается скоростная рентгеновская съемка. Снимки немедленно проявляют. Убедившись в успехе исследования, катетер удаляют.

Наиболее частое осложнение ангиографии -- развитие гематомы в области катетеризации, где появляется припухлость. Тяжелое, но редкое осложнение -- тромбоэмболия периферической артерии, о возникновении которой свидетельствует ишемия конечности.

В зависимости от цели и места введения контрастного вещества различают аортографию, коронарографию, каротидную и вертебральную артериографию, целиакографию, мезентерикографию и т.д. Для выполнения всех этих видов ангиографии конец рентгеноконтрастного катетера вводят в исследуемый сосуд. Контрастное вещество накапливается в капиллярах, отчего интенсивность тени органов, снабжаемых исследуемым сосудом, возрастает.

Венография может быть выполнена прямым и непрямым способами. При прямой венографии контрастное вещество вводят в кровь путем венопункции или веносекции.

Непрямое контрастирование вен осуществляют одним из трех способов: 1)введением контрастного вещества в артерии, из которых оно через систему капилляров достигает вен; 2) инъекцией контрастного вещества в костномозговое пространство, из которого оно поступает в соответствующие вены; 3) введением контрастного вещества в паренхиму органа путем пункции, при этом на снимках отображаются вены, отводящие кровь от данного органа. К венографии есть ряд специальных показаний: хронический тромбофлебит, тромбоэмболия, посттромбофлебитические изменения вен, подозрение на аномалию развития венозных стволов, различные нарушения венозного кровотока, в том числе из-за недостаточности клапанного аппарата вен, ранение вен, состояния после оперативных вмешательств на венах.

Новой методикой рентгенологического исследования сосудов является дигитальная субтракционная ангиография (ДСА). В основе ее лежит принцип компьютерного вычитания (субтракции) двух изображений, записанных в памяти компьютера, - снимков до и после введения контрастного вещества в сосуд. Здесь вьшелить изображение сосудов из общего изображения исследуемой части тела, в частности убрать мешающие тени мягких тканей и скелета и количественно оценить гемодинамику. Применяется меньше рентгеноконтрастного вещества, поэтому можно получить изображение сосудов при большом разведении контрастного ве щества. А это означает, что можно ввести контрастное вещество внутривенно и на последующей серии снимков получить тень артерий, не прибегая к их катетеризации.

Для выполнения лимфографии контрастное вещество вливают непосредственно в просвет лимфатического сосуда. В клинике в настоящее время проводят главным образом лимфографию нижних конечностей, таза и забрюшинного пространства. Контрастное вещество - жидкую масляную эмульсию йодистого соединения - вводят в сосуд. Рентгенограммы лимфатических сосудов делают спустя 15--20 мин, а рентгенограммы лимфатических узлов -- через 24 ч.

РАДИОНУКЛИДНЫЙ МЕТОД ИССЛЕДОВАНИЯ

Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы - их называют радиофармацевтическими препаратами (РФП) - вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей.

Кроме того, для радиометрии могут быть использованы кусочки тканей, кровь и выделения больного. Несмотря на введение ничтожно малых количеств индикатора (сотые и тысячные доли микрограмма) не оказывающих влияния на нормальное течение жизненных процессов, метод обладает исключительно высокой чувствительностью.

Выбирая РФП для исследования, врач должен прежде всего учесть его физиологическую направленность и фармакодинамику. Нужно обязательно принимать во внимание ядерно-физические свойства входящего в его состав радионуклида. Для получения изображения органов применяют только радионуклиды, испускающие Y-лучи или характеристическое рентгеновское излучение, так как эти излучения можно регистрировать при наружной детекции. Чем больше гамма-квантов или рентгеновских квантов образуется при радиоактивном распаде, тем эффективнее данный РФП в диагностическом отношении. В то же время радионуклид должен испускать по возможности меньше корпускулярного излучения - электронов, которые поглощаются в теле пациента и не участвуют в получении изображения органов. Радионуклиды, период полураспада которых - несколько десятков дней, принято считать долгоживущими, несколько дней - среднеживущими, несколько часов - короткоживущими, несколько минут - ультракоротко- живущими. Существует несколько способов получения радионуклидов. Часть из них образуется в реакторах, часть - в ускорителях. Однако наиболее распространенным способом получения радионуклидов является генераторный, т.е. изготовление радионуклидов непосредственно в лаборатории радионуклидной диагностики с помощью генераторов.

Очень важный параметр радионуклида - энергия квантов электромагнитного излучения. Кванты очень низких энергий задерживаются в тканях и, следовательно, не попадают на детектор радиометрического прибора. Кванты же очень высоких энергий частично пролетают детектор насквозь, поэтому эффективность их регистрации также невысока. Оптимальным диапазоном энергии квантов в радионуклидной диагностике считают 70-200 кэВ.

Все радионуклидные диагностические исследования делят на две большие группы: исследования, при которых РФП вводят в организм пациента, - исследования in vivo, и исследования крови, кусочков ткани и выделений больного - исследования in vitro.

СЦИНТИГРАФИЯ ПЕЧЕНИ - проводится в статическом и динамическом режимах. В статическом режиме определяется функциональная активность клеток ретикулоэндотелиальной системы (РЭС) печени, в динамическом - функциональное состояние гепатобилиарной системы. Применяется две группы радиофармпрепаратов (РФП): для исследования РЭС печени - коллоидные растворы на основе 99mTc; для исследования гепатобилиарной соединения на основе имидодиуксусной кислоты 99mTc-ХИДА, мезида.

ГЕПАТОСЦИНТИГРАФИЯ - это методика визуализации печени сцинтиграфическим методом на гамма-камере с целью определения функциональной активности и количества функционирующей паренхимы при использовании коллоидных РФП. 99mTc-коллоид вводят внутривенно активностью 2 МБк/кг. Методика позволяет определить функциональную активность ретикулоэндотелиальных клеток. Механизм накопления РФП в таких клетках - фагоцитоз. Гепатосцинтиграфию проводят через 0,5-1 час после введения РФП. Планарную гепатосцинтиграфию выполняют в трех стандартных проекциях: передней, задней и правой боковой.

Это методика визуализации печени сцинтиграфическим методом на гамма-камере с целью определения функциональной активности гепатоцитов и билиарной системы при помощи РФП на основе имидодиуксусной кислоты.

ГЕПАТОБИЛИСЦИНТИГРАФИЯ

99mTc-ХИДА (мезида) вводится внутривенно активностью 0,5 МБк/кг после укладки больного. Пациент укладывается на спину под детектором гамма-камеры, который устанавливается максимально близко к поверхности живота, чтобы в его поле зрения попала вся печень и часть кишечника. Исследование начинается сразу же после в/в введения РФП и продолжается 60 минут. Одновременно с введением РФП включаются регистрирующие системы. На 30-й минуте исследования больному дают желчегонный завтрак (2 сырых куриных желтка).Нормальные гепатоциты быстро захватывают препарат из крови и экскретируют его с желчью. Механизм накопления РФП - активный транспорт. Проходжение РФП через гепатоцит в норме занимает 2-3 мин. Первые порции его появляются в общем желчном протоке через 10-12 мин. На 2-5 минуте на сцинтиграммах отображаются печеночный и общий желчный проток, а через 2-3 минуты - желчный пузырь. Максимальная радиоактивность над печенью регистрируется в норме приблизительно через 12 минут после введения РФП. К этому времени кривая радиоактивности достигает максимума. Потом она приобретает характер плато: в этот период скорости захвата и выведения РФП приблизительно уравновешены. По мере выведения РФП с желчью радиоактивность печени снижается (на 50% за 30 минут), а интенсивность излучения над желчным пузырем возрастает. Но в кишечник выделяется очень мало РФП. Чтобы вызвать опорожнение желчного пузыря и оценить проходимость желчных путей, пациенту дают желчегонный завтрак. После этого изображение желчного пузыря прогрессивно уменьшается, а над кишечником регистрируется увеличение радиоактивности.

Радиоизотопное исследование почек и мочевыводящих путей радиоизотопный сцинтиграфия желчевыводящий печень.

Заключается в оценке функции почек, её проводят на основании визуальной картины и количественного анализа накопления и выведения паренхимой почек радиофармпрепаратов секретирующимися эпителием канальцев (гиппуран-131I, Технемаг-99mTc) или фильтрующихся почечными клубочками (ДТПА-99mTc).

Динамическая сцинтиграфия почек.

Методика визуализации почек и мочевыводящих путей сцинтиграфическим методом на гамма-камере с целью определения параметров накопления и выведения нефротропных РФП тубулярного и клубочкового механизмов элиминации. Динамическая реносцинтиграфия объединяет преимущества более простых методик и имеет более широкие возможности из-за использования компьютерных систем для обработки полученных данных.

Сканирование почек

Применяется для определения анатомо-топографических особенностей почек, локализации очага поражения и распространенности патологического процесса в них. Основаны на избирательном накоплении 99мТс - цитона (200 МБк) нормально функционирующей паренхимой почек. Применяются при подозрении на объемный процесс в почке, обусловленный злокачественной опухолью, кистой, каверной и пр., для выявления врожденной аномалии почек, выбора объема оперативного вмешательства, оценки жизнеспособности пересаженной почки.

Изотопная ренография

Основана на наружной регистрации g-излучения над областью почек от введенного в/в 131I - гиппурана (0,3-0,4 МБк), который избирательно захватывается и выводится почками. Показана при наличии мочевого синдрома (гематурия, лейкоцитурия, протеинурия, бактериурия и пр.) болевого синдрома в поясничной области, пастозности или отеков на лице, ногах, травме почек и др. Позволяет дать раздельную оценку для каждой почки скорости и интенсивности секреторной и экскреторной функции, определить проходимость мочевыводящих путей, а по клиренсу крови - наличие или отсутствие почечной недостаточности.

Радиоизотопное исследование сердца сцинтиграфия миокарда.

Метод основан на оценке распределения в сердечной мышце внутривенно введенного радиофармпрепарата, который включается в неповрежденные кардиомиоциты пропорционально коронарному кровотоку и метаболической активности миокарда. Таким образом, распределение радиофармпрепарата в миокарде отражает состояние коронарного кровотока. Области миокарда с нормальным кровоснабжением создают картину равномерного распределения радиофармпарепарата. Области миокарда с ограниченным коронарным кровотоком вследствие различных причин определяются как области со сниженным включением радиофармпрепарата, то есть, дефекты перфузии.

Метод постороен на способности меченых радионуклидом фосфатных соединений (монофосфаты, дифосфонаты, пирофосфат) включаться в минеральный обмен и накапливаться в органической матрице (коллаген) и минеральной части (гидроксилаппатит) костной ткани. Распределение радиофосфатов пропорционально кровотоку и интенсивности обмена кальция. Диагностика патологических изменений костной ткани основана на визуализации очагов гиперфиксации или реже дефектов накопления меченых остеотропных соединений в скелете.

5. Радиоизотопное исследование эндокринной системы сцинтиграфия щитовидной железы

Метод основан на визуализации функционирующей ткани щитовидной железы (включая аномально расположенную) с помощью радиофарпрепаратов (Na131I, пертехнетат технеция), которые поглощается эпителиальными клетками щитовидной железы по пути захвата неорганического йода. Интенсивность включения радионуклидных индикаторов в ткань железы характеризует ее функциональную активность, а также отдельных участков ее паренхимы («горячие» и «холодные» узлы).

Сцинтиграфия паращитовидных желез

Сцинтиграфическая визуализация патологически измененных паращитовидных желез основана на накоплении их тканью диагностических радиофармпрепаратов, об дающих повышенной тропностью к опухолевым клеткам. Выявление увеличенных паращитовидных желез проводят путем сравнения сцинтиграфических изображений полученных при максиальном накоплении радиофармпрепарата в щитовидной железе (тиреоидная фаза исследования) и при минимальном его содержании в щитовидной железе с максимумом накопления в патологически измененных паращитовидных железах (паратиреоидная фаза исследования).

Сцинтиграфия молочных желез (маммосцинтиграфия)

Диагностику злокачественных новообразований молочных желез проводят по визуальной картине распределения в ткани железы диагностических радиофарм препаратов, обладающих повышенной тропностью к опухолевым клеткам за счет повышенной проницаемостью гистогематического барьера в сочетании с более высокой плотностью клеток и более высокой васкуляризацией и кровотоком, по сравнению с неизмененной тканью молочной железы; особенностями метаболизма опухолевой ткани - повышением активности мембранной Na+-K+ АТФ-азы; экспрессией на поверхности опухолевой клетки специфических антигенов и рецепторов; усиленным синтезом белка в раковой клетке при пролиферации в опухоли; явлениями дистрофии и повреждения клеток в ткани рака молочной железы, за счет чего, в частности, выше содержание свободного Ca2+, продуктов повреждения клеток опухоли и межклеточного вещества.

Высокая чувствительность и специфичность маммосцинтиграфии определяют высокую прогностическую ценность отрицательного заключения этого метода. Т.е. отсутствие накопления радиофармпрепарата в исследуемых молочных железах указывает на вероятное отсутствие опухолевой жизнеспособной пролифирирующей ткани в них. В связи с этим, по данным мировой литературы многими авторами признается достаточным не выполнять пункционное исследование у пациентки в случае отсутствия накопления 99mTc-Технетрила в узловом «сомнительном» патологическом образовании, а лишь наблюдать за динамикой состояния в течение 4 - 6 мес.

Радиоизотопное исследование дыхательной системы

Перфузионная сцинтиграфия легких

Принцип метода основан на визуализации капиллярного русла легких с помощью меченых технецием макроагрегатов альбумина (МАА), которые при внутривенном введении эмболизируют небольшую часть капилляров легких и распределяются пропорционально кровотоку. Частицы МАА не проникают в паренхиму легких (интерстициально или альвеолярно), а временно окклюзируют капиллярный кровоток, при этом эмболизации подвергается 1:10000 часть легочных капилляров, что не отражается на гемодинамике и вентиляции легких. Эмболизация длится в течение 5-8 часов.

Вентиляция лёгких аэрозолем

Метод основан на вдыхании аэрозолей, полученных из радиофармпрепаратов (РФП), быстро выводимых из организма (чаще всего раствор 99m-Технеций DTPA). Распределение РФП в легких пропорционально регионарной легочной вентиляции, повышенное локальное накопление РФП наблюдается в местах турбулентности воздушного потока. Использование Эмиссионной Компьютерной Томографии (ЭКТ) позволяет локализовать пораженный бронхолегочный сегмент, что в среднем в 1.5 раза увеличивает точность диагностики.

Проницаемость альвеолярной мембраны

Метод основан на определении клиренса раствора радиофармпрепарата (РФП) 99m-Технеций DTPA из всего легкого или выделенного бронхолегочного сегмента после проведения вентиляции легких аэрозолем. Скорость выведения РФП прямо пропорциональна проницаемости легочного эпителия. Метод отличается неинвазивностью и простотой исполнения.

Радионуклидная диагностика in vitro (от лат. vitrum - стекло, поскольку все исследования проводят в пробирках) относится к микроанализу и занимает пограничное положение между радиологией и клинической биохимией. Принцип радиоиммунологического метода состоит в конкурентном связывании искомых стабильных и аналогичных им меченых веществ со специфической воспринимающей системой.

Cвязывающая система (чаще всего это специфические антитела или антисыворотка) вступает во взаимодействие одновременно с двумя антигенами, один из которых искомый, другой - его меченый аналог. Применяют растворы, в которых меченого антигена содержится всегда больше, чем антител. В этом случае разыгрывается настоящая борьба меченого и немеченого антигенов за связь с антителами.

Радионуклидный анализ in vitro стали называть радиоиммунологическим, поскольку он основан на использовании иммунологических реакций антиген-антитело. Так, если в качестве меченой субстанции применяют антитело, а не антиген, анализ называют иммунорадиометрическим; если же в качестве связывающей системы взяты тканевые рецепторы, говорят орадиорецепторном анализе.

Радионуклидное исследование в пробирке состоит из 4 этапов:

1. Первый этап - смешивание анализируемой биологической пробы с реагентами из набора, содержащего антисыворотку (антитела) и связывающую систему. Все манипуляции с растворами проводят специальными полуавтоматическими микропипетками, в некоторых лабораториях их осуществляют с помощью автоматов.

2. Второй этап - инкубация смеси. Она продолжается до достижения динамического равновесия: в зависимости от специфичности антигена ее длительность варьирует от нескольких минут до нескольких часов и даже суток.

3. Третий этап - разделение свободного и связанного радиоактивного вешества. С этой целью используют имеющиеся в наборе сорбенты (ионообменные смолы, уголь и др.), осаждающие более тяжелые комплексы антиген-антитело.

4. Четвертый этап - радиометрия проб, построение калибровочных кривых, определение концентрации искомого вещества. Все эти работы выполняются автоматически с помощью радиометра, оснащенного микропроцессором и печатающим устройством.

Ультразвуковые методы исследования.

Ультразвуковое исследование (УЗИ) - метод диагностики, основанный на принципе отра-жения ультразвуковых волн (эхолокации), передаваемых тканям от специального датчика - источника ультразвука - в мегагерцевом (МГц) диапазоне частоты ультразвука, от поверхностей, обла-дающих различной проницаемостью для ультразвуковых волн. Степень проницаемости зависит от плотности и эластичности тканей.

Ультразвуковые волны -- это упругие колебания среды с частотой, лежащей выше диапазона слышимых человеком звуков -- выше 20 кГц. Верхним пределом ультразвуковых частот можно считать 1 - 10 ГГц. Ультразвуковые волны относятся к числу неионизирующих излучений и в диапазоне, применяемом в диагностике, не вызывают существенных биологических эффектов

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили электромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта. Обратный пьезоэффект заключается в механической деформации тел под действием электрического поля. Основной частью такого излучателя является пластина или стержень из вещества с хорошо выраженными пьезоэлектрическими свойствами (кварц, сегнетова соль, керамический материал на основе титаната бария и др.). На поверхность пластины в виде проводящих слоев нанесены электроды. Если к электродам приложить, переменное электрическое напряжение от генератора, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствующей частоты.

Подобные документы

    Рентгенологическая диагностика - способ изучения строения и функций органов и систем человека; методы исследований: флюорография, дигитальная и электрорентгенография, рентгеноскопия, компьютерная томография; химическое действие рентгеновского излучения.

    реферат , добавлен 23.01.2011

    Методы диагностики, основанные на регистрации излучения радиоактивных изотопов и меченых соединений. Классификация видов томографии. Принципы использования радиофармацевтических препаратов в диагностике. Радиоизотопное исследование почечной уродинамики.

    методичка , добавлен 09.12.2010

    Расчет мощности ультразвукового излучателя, обеспечивающего возможность надёжной регистрации границы биологических тканей. Сила анодного тока и величина напряжения рентгеновского излучения в электронной трубке Кулиджа. Нахождение скорости распада таллия.

    контрольная работа , добавлен 09.06.2012

    Принцип получения ультразвукового изображения, способы его регистрации и архивирования. Симптомы патологических изменений при УЗИ. Методика УЗИ. Клиническое применение магнитно-резонансной томографии. Радионуклидная диагностика, регистрирующие устройства.

    презентация , добавлен 08.09.2016

    Внедрение рентгеновских лучей в медицинскую практику. Методы лучевой диагностики туберкулёза: флюорография, рентгеноскопия и рентгенография, продольная, магнитно-резонансная и компьютерная томография, ультразвуковое исследование и радионуклидные способы.

    реферат , добавлен 15.06.2011

    Инструментальные методы медицинской диагностики при рентгенологических, эндоскопических и ультразвуковых исследованиях. Сущность и разработка методов исследований и методика их проведения. Правила подготовки взрослых и детей к процедуре обследования.

    реферат , добавлен 18.02.2015

    Определение необходимости и диагностического значения рентгенологических методов исследования. Характеристика рентгенографии, томографии, рентгеноскопии, флюорографии. Особенности эндоскопических методов исследования при заболеваниях внутренних органов.

    презентация , добавлен 09.03.2016

    Виды рентгенологических исследований. Алгоритм описания здоровых легких, примеры снимков лёгких при пневмонии. Принцип компьютерной томографии. Использование эндоскопии в медицине. Порядок проведения фиброгастродуоденоскопии, показания для её назначения.

    презентация , добавлен 28.02.2016

    Биография и научная деятельность В.К. Рентгена, история открытия им Х-лучей. Характеристика и сравнение двух основных методов в медицинской рентгенодиагностике: рентгеноскопии и рентгенографии. Исследование органов желудочно-кишечного тракта и легких.

    реферат , добавлен 10.03.2013

    Основные разделы лучевой диагностики. Технический прогресс в диагностической радиологии. Искусственное контрастирование. Принцип получения рентгеновского изображения, а также плоскости сечения при томографии. Методика ультразвукового исследования.

Лучевая диагностика и лучевая терапия составные части медицинской радиологии (так принято называть эту дисциплину за рубежом).

Лучевая диагностика - практическая дисциплина, изучающая применение различных излучений с целью распознавания многочисленных болезней, для изучения морфологии и функции нормальных и патологических органов и систем человека. В состав лучевой диагностики входят: рентгенология, включая компьютерную томографию (КТ); радионуклидная диагностика, ультразвуковая диагностика, магнитно-резонансная томография (МРТ), медицинская термография и интервенционная радиология, связанная с выполнением диагностических и лечебных процедур под контролем лучевых методов исследования.

Роль лучевой диагностики вообще и в стоматологии в частности, нельзя переоценить. Лучевая диагностика характеризуется рядом особенностей. Во-первых, она имеет массовое применение как при соматических заболеваниях, так и в стоматологии. В РФ ежегодно выполняется более 115 миллионов рентгенологических исследований, более 70 миллионов ультразвуковых и более 3-х миллионов радионуклидных исследований. Во-вторых, лучевая диагностика обладает информативностью. С ее помощью устанавливается или дополняется 70-80% клинических диагнозов. Лучевая диагностика используется при 2000 различных заболеваниях. Дентальные исследования составляют 21% от всех рентгенологических исследований в РФ и почти 31% по Омской области. Другой особенностью является то, что аппаратура, используемая при лучевой диагностике, дорогостоящая, особенно компьютерные и магнитно-резонансные томографы. Их стоимость превышает 1 - 2 млн. долларов. За рубежом из-за высокой цены аппаратуры лучевая диагностика (радиология) является самой финансовоемкой отраслью медицины. Особенностью лучевой диагностики является еще и то, что рентгенология и радионуклидная диагностика, не говоря уже о лучевой терапии, обладают радиационной опасностью для персонала этих служб и пациентов. Данное обстоятельство обязывает врачей всех специальностей, в том числе стоматологов учитывать этот факт при назначении рентгенорадиологических исследований.

Лучевая терапия практическая дисциплина, изучающая применение ионизирующего излучения с лечебной целью. В настоящее время лучевая терапия располагает большим арсеналом источникров квантового и корпускулярного излучений, используемых в онкологии и при лечении неопухолевых заболеваний.

В настоящее время без лучевой диагностики и лучевой терапии не могут обойтись никакие медицинские дисциплины. Практически нет такой клинической специальности, в которой лучевая диагностика и лучевая терапия не являлись бы сопряженными с диагностикой и лечением различных заболеваний.

Стоматология одна из тех клинческих дисциплин, где рентгенологическое исследование занимает основное место в диагностике заболеваний зубочелюстной системы.

Лучевая диагностика использует 5 видов излучений, которые по способности вызывать ионизацию среды относятся к ионизирующим, или к неионизирующим излучениям. К ионизирующим излучениям относятся рентгеновское и радионуклидное излучения. К числу неионизирующих излучений относятся ультразвуковое, магнитное, радиочастотное, инфракрасное излучения. Однако, при использовании данных излучений могут возникать единичные акты ионизации в атомах и молекулах, которые однако не вызывают никаких нарушений в органах и тканях человека, не являются доминирующими в процессе взаимодействия излучения с веществом.

Основные физические характеристики излучений

Рентгеновское излучение является электромагнитным колебанием, искусственно создаваемое в специальных трубках рентгеновских аппаратов. Это излучение было открыто Вильгельмом Конрадом Рентгеном в ноябре 1895 года. Рентгеновские лучи относятся к невидимому спектру электромагнитных волн с длиной волны от 15 до 0,03 ангстрем. Энергия квантов в зависимости от мощности аппаратуры колеблется от 10 до 300 и более Кэв. Скорость распространения квантов рентгеновского излучения 300 000 км\сек.

Рентгеновские лучи обладают определенными свойствами, которые обуславливают применение их в медицине для диагностики и лечения различных заболеваний. Первое свойство - проникающая способность, способность проникать сквозь твердые и непрозрачные тела. Второе свойство - их поглощение в тканях и органах, которое зависит от удельного веса и объема тканей. Чем плотнее и объемнее ткань, тем большее поглощение лучей. Так, удельный вес воздуха равен 0,001, жира 0,9, мягких тканей 1,0, костной ткани - 1,9. Естественно, в костях будет наибольшее поглощение рентгеновского излучения. Третье свойство рентгеновых лучей - способность их вызывать свечение флюоресцирующих веществ, используемое при проведении просвечивания за экраном рентгенодиагностического аппарата. Четвертое свойство - фотохимическое, благодаря чему на рентгеновской фотопленке получается изображение. Последнее, пятое свойство - биологическое действие рентгеновых лучей на организм человека, чему будет посвящена отдельная лекция.

Рентгенологические методы исследования выполняются с помощью рентгеновского аппарата, в устройство которого входит 5 основных частей:

  • - рентгеновский излучатель (рентгеновская трубка с системой охлаждения);
  • - питающее устройство (трансформатор с выпрямителем электрического тока);
  • - приемник излучения (флюоресцирующий экран, кассеты с пленкой, полупроводиниковые датчики);
  • - штативное устройство и стол для укладки пациента;
  • - пульт управления.

Основной частью любого рентгенодиагностического аппарата является рентгеновская трубка, которая состоит из двух электродов: катода и анода. На катод подается постоянный электрический ток, который накаливает нить катода. При подаче высокого напряжения на анод электроны в результате разности потенциалов с большой кинетической энергией летят с катода и тормозятся на аноде. При торможении электронов и происходит образование рентгеновских - тормозных лучей, выходящих под определенным углом из рентгеновской трубки. Современные рентгеновские трубки имеют вращающийся анод, скорость которого достигает 3000 оборотов в минуту, что значительно снижает разогрев анода и повышает мощность и срок службы трубки.

Рентгенологический метод в стоматологии стал применяться вскоре после открытия рентгеновых лучей. Более того, считается, что первый рентгеновский снимок в России (в г. Риге) запечатлел челюсти рыбы пилы в 1896 году. В январе 1901 года появилась статья о роли рентгенографии в зубоврачебной практике. Вообще то стоматологическая рентгенология является одной из наиболее ранних разделов медицинской рентгенологии. Она стала развиваться в России, когда появились первые рентгеновские кабинеты. Первый специализированный рентгеновский кабинет при стоматологическом институте в Ленинграде был открыт в 1921 году. В Омске рентгеновские кабинеты общего назначения (где выполнялись и снимки зубов) открылись в 1924 году.

Рентгеновский метод включает следующие методики: рентгеноскопию, то есть получение изображения на флюоресцирующем экране; рентгенографию - получение изображения на рентгеновской пленке, помещенной в рентгенопрозрачную кассету, где она защищена от обычного света. Эти методики относятся к основным. Дополнительные включают: томографию, флюорографию, рентгеноденситометрию и др.

Томография - получение послойного изображения на рентгеновской пленке. Флюорография - это получение рентгеновского изображения меньшего размера (72×72 мм или 110×110 мм) в результате фотографического переноса изображения с флюоресцирующего экрана.

Рентгеновский метод включает и специальные, рентгеноконтрастные исследования. При проведении этих исследований используются специальные приемы, приспособления для получения рентгеновского изображения, а рентгеноконтрастные они именуются потому, что при исследовании применяются различные контрастные вещества, задерживающие рентгеновские лучи. К контрастным методикам относятся: ангио-, лимфо-, уро-, холецистография.

К рентгеновскому методу относится и компьютерная томография (КТ, РКТ), которая была разработана английским инженером Г.Хаунсфильдом в 1972 году. За это открытие он и другой ученый - А.Кормак получили в 1979 году нобелевскую премию. Компьютерные томографы в настоящее время имеются и в Омске: в Диагностическом центре, Областной клинической больнице, Иртышкой центральной бассейновой клинической больнице. Принцип РКТ основан на послойном исследовании органов и тканей тонким импульсным пучком рентгеновского излучения в поперечном сечении с последующей компьютерной обработкой тонких различий поглощения рентгеновских лучей и вторичным получением томографического изображения исследуемого объекта на мониторе или пленке. Современные рентгеновские компьютерные томографы состоят из 4 основных частей: 1- сканирующая система (рентгеновская трубка и детекторы); 2 - высоковольтный генератор - источник питания на 140 Кв и силой тока до 200 мА; 3 - пульт управления (клавиатура управления, монитор); 4 - компьютерная система, предназначенной для предварительной обработки, поступающей от детекторов информации и получения изображения с оценкой плотности объекта. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием прежде всего большей чувствиетльностью. Она позволяет отдифференцировать отдельные ткани друг от друга, отличающиеся по плотности в пределах 1 - 2% и даже в 0,5%. При рентгенографии этот показатель составляет 10 - 20%. КТ дает точную количественную информацию о размерах плотности нормальных и патологических тканей. При использовании контрастных веществ, методом так называемого внутривенного контрастного усиления повышается возможность более точного выявления патологических образований, проводить дифференциальную диагностику.

В последние годы появилась новая рентгенологическая система получения дигитального (цифрового) изображения. Каждая дигитальная картинка сотоит из множества отдельных точек, которым соответствует числовая интенсивность свечения. Степень яркости точек улавливается в специальном приборе - аналого-цифровом преобразователе (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр, то есть происходит цифровое кодирование сигналов. Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходимо цифро-аналоговый преобразователь (ЦАП), где цифровой образ трансформируется в аналоговое, видимое изображение. Дигитальная рентгенография постепенно будет вытеснять обычную пленочную рентгенографию, так как она отличается быстрым получением изображения, не требует фотохимической обработки пленки, обладает большей разрешающей возможностью, позволяет проводить математическую обработку изображения, архивировать на магнитные носители информации, дает значительно меньшую лучевую нагрузку на пациента (приблизительно в 10 раз), увеличивает пропускную способность кабинета.

Второй метод лучевой диагностики - радионуклидная диагностика. В качестве источников излучения применяются различные радиоактивные изотопы, радионуклиды.

Естественную радиоактивность открыл в 1896 году А.Беккерель, а искусственную в 1934 году Ирен и Жолио Кюри. Наиболее часто в радионуклидной диагностике используются радионуклиды (РН) гамма-излучатели и радиофармпрепараты (РФП) с гамма-излучателями. Радионуклид - изотоп, физические свойства которого определяют пригодность его к радиодиагностическим исследованиям. РФП называются диагностические и лечебные средства на основе радиоактивных нуклидов - вещества неорганической или органической природы, в структуре которых содержится радиоактивный элемент.

В стоматтологической практике и вообще в радионуклидной диагностике широкое применение имеют следующие радионуклиды: Тс 99 m , In- 113 m , I- 125 , Xe- 133 , реже I- 131 , Hg- 197 . Используемые для радионуклидной диагностики РФП по их поведению в организме разделяются условно на 3 группы: органотропные, тропные к патологическому очагу и без выраженной селективности, тропности. Тропность РФП бывает направленной, когда препарат включается в специфический обмен клеток определённого органа, в котором происходит его накопление, и косвенной, когда в органе происходит временная концентрация РФП по пути его прохождения или выведения из организма. Кроме того, выделяется и вторичная селективность, когда препарат, не обладая способностью к накоплению, вызывает в организме химические превращения, которые обусловливают возникновение новых соединений, уже накапливаемые в определённых органах или тканях. Самым распространённым РН в настоящее время является Тс 99 m , который является дочерним нуклидом радиоактивного молибдена Мо 99 . Тс 99 m , образуется в генераторе, где Мо- 99 распадается, путём бета-распада, с образованием долгоживущего Тс- 99 m . Последний при распаде испускает гамма-кванты с энергией 140 кэв (наиболее технически удобная энергия). Период полураспада Тс 99 m составляет 6 часов, что достаточно для всех радионуклидных исследований. Из крови он выводится с мочой (30 % в течении 2 час), накапливается в костях. Приготовление РФП на основе метки Тс 99 m осуществляется непосредственно в лаборатории с помощью набора специальных реагентов. Реагенты в соответствии с прилагаемой к наборам инструкцией, определённым образом перемешиваются с элюатом (раствором) технеция и в течение нескольких минут происходит образование РФП. Растворы РФП являются стерильными и апирогенными, и могут вводиться внутривенно. Многочисленные методики радионуклидной диагностики подразделяются на 2 группы в зависимости от того, вводится ли РФП в организм пациента или используется для исследования изолированных проб биосред (плазмы крови, мочи и кусочки ткани). В первом случае методики обьединяются в группу исследований in vivo, во-втором случае - in vitro. Оба способа имеют принципиальные различия в показаниях, в технике выполнения и в получаемых результатах. В клинической практике чаще всего используются комплексные исследования. Радионуклидные исследования in vitro используются для определения в сыворотке крови человека концентрации различных биологически активных соединений, количество которых в настоящее время достигает более 400 (гормоны, лекарственные вещества, ферменты, витамины). Они применяются для диагностики и оценки патологии репродуктивной, эндокринной, гемопоэтической и иммунологической систем организма. Большая часть современных наборов реагентов основана на радиоиммунологическом анализе (РИА), который был впервые предложен Р. Ялоу в 1959 г., за что автору была присуждена Нобелевская премия в 1977 г.

В последнее время наряду с РИА развивается новая методика радиорецепторного анализа (РРА). РРА также основан на принципе конкурентного равновесия меченного лиганда (меченый антиген) и исследуемого вещества сыворотки, но не с антителами, а с рецепторными связями клеточной мембраны. РРА отличается от РИА более коротким сроком постановки методики и ещё большей специфичностью.

Основными принципами радионуклидных исследований in vivo являются:

1.Изучение особенностей распределения в органах и тканях введенного РФП;

2.Определение динамики пассажирования РФП у пациента. Методики основанные на первом принципе дают характеристику анатомо-топографического состояния органа или системы и называются статическими радионуклидными исследованаями. Методики, основанные на втором принципе, позволяют оценить состояние функций исследуемого органа или системы и называются динамическами радионуклидными исследованиями.

Сушествуют несколько методик измерения радиоактивности организма или его частей после введения РФП.

Радиометрия. Эта методика измерения интенсивности потока ионизирующего излучения в единицу времени, выражающаяся в условных единицах-импульсах в секунду или минуту (имп/сек). Для измерения используют радиометрическую аппаратуру (радиометры, комплексы). Эта методика используется при исследовании накопления Р 32 в тканях кожи, при исследовании щитовидной железы, для изучения метаболизма белков, железа, витаминов в организме.

Радиография - метод непрерывной или дискретной регистрации процессов накопления, перераспределения и выведения РФП из организма или отдельных органов. Для этих целей применяют радиографы, в которых измеритель скорости счета соединен с самописцем, вычерчивающим кривую. В составе радиографа может быть один или несколько детекторов, каждый из которых ведет измерение независимо друг от друга. Если клиническая радиометрия предназначена для однократного или нескольких повторных измерений радиоактивности организма или его частей, то с помощью радиографии можно проследить динамику накопления и его выведения. Типичным примером радиографии является исследование накопления и выведения РФП из легких (ксенон), из почек, из печени. Радиографическая функция в современных аппаратах совмещена в гамма-камере с визуализацией органов.

Радионуклидная визуализация. Методика создания картины пространственного распределения в органах РФП, введенного в организм. Радионуклидная визуализация в настоящее время включает в себя следующие виды:

  • а) сканирование,
  • б) сцинтиграфию с использованием гамма-камеры,
  • в) однофотонную и двухфотонную позитронкую эмиссионную томографию.

Сканирование-метод визуализации органов и тканей посредотвом движущегося над телом сцинтилляционного детектора. Прибор, проводящий исследование называется сканер. Главный недостаток - большая продолжительность исследования.

Сцинтиграфия-получение изображения органов и тканей посредством регистрации на гамма-камере излучений, исходяших от радионуклидов, распределённых в органах и тканях и в организме в целом. Сцинтиграфия в настоящее время является основным методом радионуклидной визуализации в клинике. Он позволяет изучить быстро протекающие процессы распределения вводимых в организм радиоактивных соединений.

Однофотонная эмисионная томография (ОФЭТ). При ОФЭТ используются такие же РФП, что и при сцинтиграфии. В этом аппарате детекторы расположены в ротационной томокамере, которая вращается вокруг пациента, давая возможность после компьютерной обработки, получить изображение распределения радионуклидов в различных слоях тела в пространстве и во времени.

Двухфотонная эмииссионная томография (ДФЭТ). Для ДФЭТ в организм человека вводят позитрон излучающий радионуклид (С 11 , N 13 , О 15 , F 18). Позитроны, испускaeмыe этими нуклидами, аннигилируют вблизи ядер атомов с электронами. При аннигиляции пара позитрон-электрон исчезает, образуя два гамма-кванта с энергией 511 кэв. Эти два кванта, разлетающиеся в строго противоположном направлении регистрируются двумя также противоположно расположенными детекторами.

Компьютерная обработка сигналов позволяет получить объемное и цветное изображение объекта исследования. Пространственное разрешение ДФЭТ хуже, чем на рентгеновских компьютерных и магнитно-резонансных томографах, но чувствительность метода фантастическая. ДФЭТ позволяет констатировать изменение расхода глюкозы, меченного С 11 в «глазном центре» головного мозга, при открывании глаз, удается выявить изменения при мыслительном процессе определить т.н. «душу», расположенную, как полагают некоторые ученые, в головном мозге. Недостатком этого метода является то, что использование его возможнно только при наличии циклотрона, радиохимической лаборатории для получения короткоживущих нуклидов, позитронного томографа и компьютера для обработки информации, что очень дорого и громоздко.

В последнее десятилетие в практику здравоохранения широким фронтом вошла ультразвуковая диагностика, основанная на использовании ультразвукового излучения.

Ультразвуковое излучение относится к невидимому спектру с длиною волны 0,77-0,08 мм и частотой колебаний свыше 20 Кгц. Звуковые колебания с частотой более 10 9 гц относятся к гиперзвуку. Ультразвук имеет определённые свойства:

  • 1.В однородной среде ультразвук (УЗ) распределяется прямолинейно с одинаковой скоростью.
  • 2. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, другая часть преломляется, продолжая прямолинейное распространение, третья - ослабляется.

Ослабление УЗ определяется так называемым ИМПЕДАНСОМ - ультразвуковым ослаблением. Величина его зависит от плотности среды и скорости распространения в ней УЗ волны. Чем выше градиент перепада акустической плотности пограничных сред, тем большая часть УЗ колебаний отражается. Например, на границе перехода УЗ из воздуха на кожу происходит отражение почти 100% колебаний (99,99%). Именно поэтому при ультразвуковом исследовании (УЗИ) необходимо смазывать поверхность кожи пациента водным желе, которое выполняет роль переходной среды, ограничивающей отражение излучения. УЗ почти полностью отражается от кальцинатов, давая резкое ослабление эхосигналов в виде акустической дорожки (дистальная тень). Наоборот, при исследовании кист и полостей, содержащих жидкость, возникает дорожка за счет компенсаторного усиления сигналов.

Наибольшее распространение в клинической практике нашли три метода ультразвуковой диагностики: одномерное исследование (эхография), двухмерное исследование (сканирование, сонография) и допплерография.

1. Одномерная эхография основана на отражении импульсов У3, которые фиксируются на мониторе в виде вертикальных всплесков (кривых) на прямой горизонтальной линии (линии развертки). Одномерный метод дает информацию о расстояниях между слоями тканей на пути ультразвукового импульса. Одномерная эхография до настоящего времени применяется в диагностике болезней головного мозга (эхоэнцефалография), органа зрения, сердца. В нейрохирургии эхоэнцефалография используется для определения размеров желудочков и положения срединных диэнцефальных структур. В офтальмологической практике этот метод применяется для изучения структур глазного яблока, помутнения стекловидного тела, отслойки сетчатки или сосудистой оболочки, для уточнения локализации инородного тела или опухоли в орбите. В кардиологической клинике эхография оценивает структуру сердца в виде кривой на видеомониторе называемой М-эхограммой (motion - движение).

2. Двухмерное ультразвуковое сканирование (сонография). Позволяет получить двухмерное изображение органов (В-метод, brightness - яркость). При сонографии идет перемещение датчика в направлении перпендикулярном линии распространения ультразвукового луча. Отраженные импульсы сливаются в виде светящихся точек на мониторе. Поскольку датчик находится в постоянном движении, а экран монитора имеет длительное свечение, то отраженные импульсы сливаются, формируя изображение сечения обследуемого органа. Современные аппараты имеют до 64 степеней градации цвета, именуемой «серой шкалой», обеспечивающей разницу в структурах органов и тканей. Дисплей делает изображение в двух качествах: позитивном (белый фон, черное изображение) и негативном (черный фон, белое изображение).

Визуализация в режиме реального времени отражает динамическое изображение движущихся структур. Она обеспечивается разнонаправленными датчиками, имеющих до 150 и более элементов - линейное сканирование, либо из одного, но совершающего быстрые колебательные движения - секторальное сканирование. Картина исследуемого органа при УЗИ в масштабе реального времени возникает на видеомониторе мгновенно с момента исследования. Для исследования органов прилегающих к открытым полостям (прямой кишке, влагалищу, ротовой полости, пищеводу, желудку, толстой кишке) - используют специальные интраректальные, интравагинальные и другие внутриполостные датчики.

3.Допплеровская эхолокация - метод ультразвукового диагностического исследования движущихся объектов (элементов крови), основанный на эффекте Допплера. Эффект Допплера связан с изменением частоты ультразвуковой волны, воспринимаемой датчиком, происходящее вследствие перемещения исследуемого объекта относительно датчика: частота эхосигнала, отраженного от движущегося объекта, отличается от частоты излученного сигнала. Существует две модификации допплерографии:

  • а) - непрерывная, которая наиболее эффективна при измерении высоких скоростей кровотока в местах сужения сосудов, однако непрерывная допплерография имеет существенный недостаток - она даёт суммарную скорость движения объекта, а не только потока крови;
  • б) - импульсная допплерография лишена этих недостатков и позволяет измерить малые скорости на большой глубине или большие скорости на малой глубине в нескольких контрольных объектах малой величины.

Допплерография используется в клинике для изучения формы контуров и просветов кровеносных сосудов (сужения, тромбоз, отдельные склеротические бляшки). Важное значение в клинике УЗ диагностики в последние годы приобретает сочетание сонографии и допплерографии (т.н. дуплексная сонография), которая и позволяет выявить изображение сосудов (анатомическая информация) и получает запись кривой кровотока в них (физиологическая информация), к тому же в современных ультразвуковых аппаратах имеется система, позволяющая раскрашивать разнонаправленные потоки крови в разные цвета (синий и красный), так называемое цветное допплеровское картирование. Дуплексная сонография, цветное картирование позволяют следить за кровенаполнением плаценты, сокращениями сердца у плода, за направлением кровотока в камерах сердца, определять обратный ток крови в системе воротной вены, вычислять степень стеноза сосудов и т.д.

В последние годы стали известны некоторые биологические эффекты у персонала при проведении УЗ исследований. Действие УЗ через воздух прежде всего сказывается на критическом объёме, каковым является уровень сахара в крови, отмечаются электролитные сдвиги, повышается утомляемость, возникает головная боль, тошнота, шум в ушах, раздражительность. Однако в большинстве случаев эти признаки носят неспецифический характер и имеют выраженную субъективную окраску. Этот вопрос требует дальнейшего изучения.

Медицинская термография - метод регистрации естественного теплового излучения тела человека в виде невидимых инфракрасных излучений. Инфракрасное излучение (ИКИ) дают все тела с температурой выше минус 237 0 С. Длина волны ИКИ от 0,76 до 1 мм. Энергия излучения меньше, чем у квантов видимого света. ИКИ поглощается и слабо рассеивается, имеет как волновое, так и квантовое свойство. 0собенности метода:

  • 1. Абсолютно безвреден.
  • 2. Высокая скорость исследования (1 - 4 мин.).
  • 3. Достаточно точный - улавливает колебания в 0,1 0 С.
  • 4. Имеет возможность одновременно оценивать функциональное состояние нескольких органов и систем.

Методики термографического исследования:

  • 1. Контактная термография основана на использовании термоиндакаторных пленок на жидких кристаллах в цветном изображении. По цветному окрашиванию изображения с помощью калориметрической линейки судят о температуре поверхностных тканей.
  • 2. Дистанционная инфракракрасная термография - самый распространенный метод терморгафии. Она обеспечивает получение изображения теплового рельефа поверхности тела и измерение температуры в любом участке тела человека. Дистанционный тепловизор дает возможность получать на экране аппарата отображение теплового поля человека в виде черно-белого или цветного изображения. Эти изображения можно зафиксировать на фотохимической бумаге и получить термограмму. Используя так называемые активные, стрессовые пробы: холодовые, гипертермические, гипергликемические, можно выявить начальные, даже скрытые нарушения терморегуляции поверхности тела человека.

В настоящее время термография применяется для обнаружения расстройств кровообращения, воспалительных, опухолевых и некоторых профессиональных заболеваний, особенно при диспансерном наблюдении. Считается, что этот метод, имея достаточную чувствительность, не обладает высокой специфичностью, что затрудняет его широкое применение при диагностике различных заболеваний.

Последние достижения науки и техники позволяют измерять температуру внутренних органов по собственному их излучению радиоволн в СВЧ диапазоне. Эти измерения производят с помощью микроволнового радиометра. Зa этим методом более перспективное будущее, чем за инфракрасной термографией.

Огромным событием последнего десятилетия явилось внедрение в клиническую практику поистине революционного метода диагностики ядерно-магнитной-резонансной томографии, именуемой в настоящее время магнитно-резонансной томографией (слово «ядерная» снято, чтобы не вызывать у населения радиофобии). Метод магнитно-резонансной томографии (МРТ) основан на улавливании электромагнитных колебаний от определенных атомов. Дело в том, что ядра атомов, содержащие нечётное количество протонов и нейтронов имеют собственный ядерно-магнитный спин, т.е. угловой момент вращения ядра вокруг собственной оси. К таким атомам относится водород, составная часть воды, которая в организме человека доходит до 90%. Подобный эффект дают и другие атомы, содержащие нечётное количество протонов и нейтронов (углерод, азот, натрий, калий и другие). Поэтому каждый атом подобен магниту и в обычных условиях оси углового момента располагаются хаотично. В магнитном поле диагностического диапазона при мощности порядка 0,35-1,5 Т (единица измерения магнитного поля названа в честь Тесла - сербского, югославского учeнoгo, имеющего 1000 изобретений), атомы ориентируются по направлению магнитного поля параллельно или антипараллельно. Если в этом состоянии наложить радиочастотное поле (порядка 6,6-15 Мгц), то возникает ядерно-магнитный резонанс (резонанс, как известно, возникает, когда частота возбуждения совпадает с собственной частотой системы). Этот радиочастотный сигнал улавливается детекторами и через компьютерную систему строится изображение, основанное на протонной плотности (чем больше протонов в среде, тем интенсивнее сигнал). Наиболее яркий сигнал дает жировая ткань (высокая протонная плотность). Наоборот, костная ткань из-за небольшого количества воды (протонов), дает наименьший сигнал. Для каждой ткани свой сигнал.

Магнитно-резонансная томография обладает рядом преимуществ перед остальными методами диагностической визуализации:

  • 1. Отсутствие лучевой нагрузки,
  • 2. Отсутствие необходимости применения контрастных веществ в большинстве случаев рутинной диагностики, так как МРТ позволяет видеть с осуды, особеннокрупные и средние без контрастирования.
  • 3. Возможность получения изображения в любой плоскости, включая три ортоганальные анатомические проекции, в отличие от рентгеновской компьютерной томографии, где исследование проводится в аксиальной проекции, и в отличии от УЗИ, где изображение ограниченное (продольное, поперечное, секторальное).
  • 4. Высокая разрешающая способность выявления структур мягких тканей.
  • 5. Нет необходимости специальной подготовки пациента к исследованию.

За последние годы появились новые методы лучевой диагностики: получение трехмерного изображения с использованием спиральной компьютерной рентгеновской томографии, возник метод использующий принцип виртуальной реальности с трехмерным изображением, моноклоналъная радионуклидная диагностика и некоторые другие методы, находящиеся на стадии эксперимента.

Таким образом, в этой лекции дана общая характеристика методов и методик лучевой диагностики, более подробное описание их будет дано в частных разделах.

*Профилактическое обследование (флюорография выполняется 1 раз в год для исключения наиболее опасной патологии легких) *Показания к применению

*Метаболические и эндокринные болезни (остеопороз, подагра, сахарный диабет, гипертиреоз и т. д.) *Показания к применению

*Болезни почек (пиелонефрит, МКБ и т. д.), при этом рентгенография выполняется с контрастом Правосторонний острый пиелонефрит *Показания к применению

*Заболевания желудочно-кишечного тракта (дивертикулез кишечника, опухоли, стриктуры, грыжа пищеводного отверстия диафрагмы и т. д.). *Показания к применению

*Беременность – существует вероятность негативного влияния излучения на развитие плода. *Кровотечение, открытые раны. За счет того, что сосуды и клетки красного костного мозга очень чувствительны к излучению у пациента может произойти нарушения кровотока в организме. *Общее тяжелое состояние пациента, чтобы не усугубить состояние больного. *Противопоказания к применению

*Возраст. Детям до 14 лет не рекомендуется делать рентген, так как до периода полового созревания человеческий организм слишком подвержен воздействию рентгеновских лучей. *Ожирение. Не является противопоказанием, но избыточный вес затрудняем процесс диагностики. *Противопоказания к применению

* В 1880 году французские физики, братья Пьер и Поль Кюри, заметили, что при сжатии и растяжении кристалла кварца с двух сторон на его гранях, перпендикулярных направлению сжатия, появляются электрические заряды. Это явление было названо пьезоэлектричеством. Ланжевен попробовал зарядить грани кварцевого кристалла электричеством от генератора переменного тока высокой частоты. При этом он заметил, что кристалл колеблется в такт изменению напряжения. Чтобы усилить эти колебания, ученый вложил между стальными листами-электродами не одну, а несколько пластинок и добился возникновения резонанса – резкого увеличения амплитуды колебаний. Эти исследования Ланжевена позволили создавать ультразвуковые излучатели различной частоты. Позже появились излучатели на основе титаната бария, а также других кристаллов и керамики, которые могут быть любой формы и размеров.

* УЛЬТРАЗВУКОВОЕ ИССЕДОВАНИЕ В настоящее время ультразвуковая диагностика получила широкое распространение. В основном при распознавании патологических изменений органов и тканей используют ультразвук частотой от 500 к. Гц до 15 МГц. Звуковые волны такой частоты обладают способностью проходить через ткани организма, отражаясь от всех поверхностей, лежащих на границе тканей разного состава и плотности. Принятый сигнал обрабатывается электронным устройством, результат выдается в виде кривой (эхограмма) или двухмерного изображения (т. н. сонограмма – ультразвуковая сканограмма).

* Вопросы безопасности ультразвуковых исследований изучаются на уровне международной ассоциации ультразвуковой диагностики в акушерстве и гинекологии. На сегодняшний день принято считать, что никаких отрицательных воздействий ультразвук не оказывает. * Применение ультразвукового метода диагностики безболезненно и практически безвредно, так как не вызывает реакций тканей. Поэтому противопоказаний для ультразвукового исследования не существует. Благодаря своей безвредности и простоте ультразвуковой метод имеет все преимущества при обследовании детей и беременных. * Вредно ли ультразвуковое исследование?

*ЛЕЧЕНИЕ УЛЬТРАЗВУКОМ В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 – 44 к. Гц и от 800 к. Гц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово - и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Ультразвуковые процедуры дозируются по интенсивности используемого ультразвука и по продолжительности процедуры. Обычно применяют малые интенсивности ультразвука (0, 05 – 0, 4 Вт/см 2), реже средние (0, 5 – 0, 8 Вт/см 2). Ультразвуковую терапию можно проводить в непрерывном и импульсном режимах ультразвуковых колебаний. Чаще применяют непрерывный режим воздействия. При импульсном режиме уменьшаются тепловой эффект и общая интенсивность ультразвука. Импульсный режим рекомендуется при лечении острых заболеваний, а также для ультразвуковой терапии у детей и пожилых людей с сопутствующими заболеваниями сердечно -сосудистой системы. Ультразвук воздействует лишь на ограниченную часть тела площадью от 100 до 250 см 2, это рефлексогенные зоны или область поражения.

Внутриклеточные жидкости меняют электропроводность и кислотность, изменяется проницаемость клеточных мембран. Некоторое представление об этих событиях дает обработка крови ультразвуком. После такой обработки кровь приобретает новые свойства – активизируются защитные силы организма, повышается его сопротивляемость инфекциям, радиации, даже стрессу. Эксперименты на животных показывают, что ультразвук не оказывает мутагенного или канцерогенного действия на клетки – время его воздействия и интенсивность настолько незначительны, что такой риск практически сводится к нулю. И, тем не менее, врачи, основываясь на многолетнем опыте использования ультразвука, установили некоторые противопоказания для ультразвуковой терапии. Это – острые интоксикации, болезни крови, ишемическая болезнь сердца со стенокардией, тромбофлебит, склонность к кровотечениям, пониженное артериальное давление, органические заболевания Центральной Нервной Системы, выраженные невротические и эндокринные расстройства. После многолетних дискуссий, приняли, что при беременности ультразвуковое лечение назначать также не рекомендуется.

*За последние 10 лет появилось огромное количество новых лекарственных препаратов, выпускаемых в виде аэрозолей. Они часто используются при респираторных заболеваниях, хронических аллергиях, для вакцинации. Аэрозольные частицы размером от 0, 03 до 10 мкм применяют для ингаляции бронхов и легких, для обработки помещений. Их получают с помощью ультразвука. Если такие аэрозольные частицы зарядить в электрическом поле, то возникают еще более равномерно рассеивающиеся (т. н. высокодисперсные) аэрозоли. Обработав ультразвуком лекарственные растворы, получают эмульсии и суспензии, которые долго не расслаиваются и сохраняют фармакологические свойства. *Ультразвук в помощь фармакологам.

*Весьма перспективной оказалась и транспортировка липосом – жировых микрокапсул, заполненных лекарственными препаратами, в ткани, предварительно обработанные ультразвуком. В тканях, подогретых ультразвуком до 42 – 45*С, сами липосомы разрушаются, а лекарственное вещество попадает внутрь клеток сквозь мембраны, ставшие проницаемыми под действием ультразвука. Липосомный транспорт чрезвычайно важен при лечении некоторых острых воспалительных заболеваний, а также в химиотерапии опухолей, поскольку лекарства концентрируются только в определенной области, почти не затрагивая другие ткани. *Ультразвук в помощь фармакологам.

*Контрастная рентгенография – это целая группа методов рентгенологического исследования, отличительной особенностью которых является использование в ходе исследования рентгеноконтрастных препаратов для повышения диагностической ценности снимков. Чаще всего контрастирование применяется для исследования полых органов, когда необходимо оценить их локализацию и объём, структурные особенности их стенок, функциональные характеристики.

Данные методы широко используются при рентгенологическом исследовании желудочнокишечного тракта, органов мочевыделительной системы (урография), оценке локализации и распространённости свищевых ходов (фистулография), особенностей строения сосудистой системы и эффективности кровотока (ангиография) и т. д.

*Контрастирование может быть инвазивным, когда контрастное вещество вводится в полость организма (внутримышечно, внутривенно, внутриартериально) с повреждением кожного покрова, слизистых оболочек, или неинвазивным, когда контрастное вещество глотается или нетравматично вводится по другим естественным путям.

* Рентгеноконтрастные вещества (препараты) – это категория диагностических средств, отличающихся по способности поглощать рентгеновское излучение от биологических тканей. Их используют для выделения структур органов и систем, не выявляемых или плохо выявляемых при обычной рентгенографии, рентгеноскопии, компьютерной томографии. * Рентгеноконтрастные вещества подразделяют на две группы. К первой группе относят препараты, поглощающие рентгеновское излучение слабее тканей тела (рентгенонегативные), ко второй – поглощающие рентгеновское излучение в значительно большей степени, чем биологические ткани (рентгенопозитивные).

*Рентгенонегативными веществами являются газы: двуокись углерода (СО 2), закись азота (N 2 О), воздух, кислород. Их используют для контрастирования пищевода, желудка, двенадцатиперстной и толстой кишки самостоятельно или в комплексе с рентгенопозитивными веществами (так называемое двойное контрастирование), для выявления патологии вилочковой железы и пищевода (пневмомедиастинум), при рентгенографии крупных суставов (пневмоартрография).

*Сульфат бария наиболее широко применяют при рентгеноконтрастных исследованиях желудочнокишечного тракта. Его используют в виде водной взвеси, в которую для повышения стабильности взвеси, большей адгезии со слизистой оболочкой, улучшения вкусовых качеств также добавляют стабилизаторы, противовспенивающие и дубящие вещества, вкусовые добавки.

*При подозрении на инородное тело в пищеводе применяют густую пасту сульфата бария, которую дают проглотить больному. В целях ускорения прохождения сульфата бария, например при исследовании тонкой кишки, его вводят в охлажденном виде либо добавляют к нему лактозу.

*Среди йодсодержащих рентгеноконтрастных веществ в основном используют водорастворимые органические соединения йода и йодированные масла. * Наиболее широко применяют водорастворимые органические соединения йода, в частности верографин, урографин, йодамид, триомбраст. При внутривенном введении эти препараты в основном выделяются почками, на чем основана методика урографии, позволяющая получить отчетливое изображение почек, мочевых путей, мочевого пузыря.

* Водорастворимые органические йодсодержащие контрастные вещества применяют также при всех основных видах ангиографии, рентгенологических исследованиях верхнечелюстных (гайморовых) пазух, протока поджелудочной железы, выводных протоков слюнных желез, фистулографии

* Жидкие органические соединения йода в смеси с носителями вязкости (перабродил, йодурон В, пропилйодон, хитраст), относительно быстро выделяемые из бронхиального дерева, используют для бронхографии, йодорганические соединения применяют при лимфографии, а также для контрастирования оболочечных пространств спинного мозга и вентрикулографии

*Органические йодсодержащие вещества, особенно водорастворимые, вызывают побочные эффекты (тошноту, рвоту, крапивницу, зуд, бронхоспазм, отек гортани, отек Квинке, коллапс, нарушение ритма сердца и др.), выраженность которых в значительной мере определяется способом, местом и скоростью введения, дозой препарата, индивидуальной чувствительностью пациента и другими факторами *Разработаны современные рентгеноконтрастные вещества, оказывающие значительно менее выраженное побочное действие. Это так называемые димерные и неионные водорастворимые органические йодзамещенные соединения (йопамидол, йопромид, омнипак и др.), которые вызывают значительно меньше осложнений, особенно при ангиографии.

Использование йодсодержащих препаратов противопоказано у больных с повышенной чувствительностью к йоду, с тяжелыми нарушениями функции печени и почек, при острых инфекционных болезнях. При появлении осложнений в результате применения рентгеноконтрастных препаратов показаны экстренные противоаллергические меры – антигистаминные средства, препараты кортикостероидов, внутривенное введение раствора тиосульфата натрия, при падении АД – противошоковая терапия.

*Магнитно-резонансные томографы *Низкопольные (напряженность магнитного поля 0, 02 -0, 35 Т) *Среднепольные (напряженность магнитного поля 0, 35 - 1, 0 Т) *Высокопольные (напряженность магнитного поля 1, 0 Т и выше – как правило, более 1, 5 Т)

*Магнитно-резонансные томографы *Магнит, создающий постоянное магнитное поле высокой напряженности (для создания эффекта ЯМР) *Радиочастотная катушка, генерирующая и принимающая радиочастотные импульсы (поверхностные и объемные) *Градиентная катушка (для управления магнитным полем в целях получения МР-срезов) *Блок обработки информации (компьютер)

* Магнитно-резонансные томографы Типы магнитов Преимущества 1) низкое энергопотребление 2) низкие эксплуатационные Постоянные расходы 3) малое поле неуверенного приема 1) низкая стоимость Резистивные 2) низкая масса (электромаг 3) возможность управления ниты) полем 1) высокая напряженность поля Сверхпрово 2) высокая однородность поля дящие 3) низкое энергопотребление Недостатки 1) ограниченная напряженность поля (до 0, 3 Т) 2) высокая масса 3) нет возможности управления полем 1) высокое энергопотребление 2) ограниченная напряженность поля (до 0, 2 Т) 3) большое поле неуверенного приема 1) высокая стоимость 2) высокие расходы 3) техническая сложность

*Т 1 и Т 2 -взвешенные изображения Т 1 -взвешенное изображение: ликвор гипоинтенсивный Т 2 -взвешенное изображение: ликвор гиперинтенсивный

*Контрастные вещества для МРТ *Парамагнетики – повышают интенсивность МР-сигнала за счет укорочения времени Т 1 -релаксации и являются «позитивными» агентами для контрастирования – внеклеточные (соединения ДТПА, ЭДТА и их производных – с Mn и Gd) – внутриклеточные (Mn-ДПДФ, Mn. Cl 2) – рецепторные *Суперпарамагнетики – снижают интенсивность МР-сигнала за счет удлинения времени Т 2 -релаксации и являются «негативными» агентами для контрастирования – комплексы и взвеси Fe 2 O 3

*Преимущества магнитнорезонансной томографии * Самая высокая разрешающая способность среди всех методов медицинской визуализации * * Отсутствие лучевой нагрузки * Дополнительные возможности (МР-ангиография, трехмерная реконструкция, МРТ с контрастированием и др.) Возможность получения первичных диагностических изображений в разных плоскостях (аксиальной, фронтальной, сагиттальной и др.)

*Недостатки магнитнорезонансной томографии *Низкая доступность, высокая стоимость *Длительное время МР-сканирования (сложность исследования подвижных структур) *Невозможность исследования пациентов с некоторыми металлоконструкциями (ферро- и парамагнитными) *Сложность оценки большого объема визуальной информации (граница нормы и патологии)

Одним из современных методов диагностирования различных заболеваний является компьютерная томография (КТ, Энгельс, Саратов). Компьютерная томография - метод послойного сканирования исследуемых участков организма. На основе данных о поглощении тканями рентгеновских лучей компьютер создает изображение необходимого органа в любой выбранной плоскости. Метод применяется для детального исследования внутренних органов, сосудов, костей и суставов.

КТ-миелография - метод, сочетающий возможности КТ и миелографии. Его относят к инвазивным методам получения изображений, так как необходимо введение контрастного вещества в субарахноидальное пространство. В отличие от рентгеновской миелографии при КТ -миелографии требуется меньшее количество контрастного вещества. В настоящее время КТ -миелографию используют в стационарных условиях, чтобы определять проходимость ликворных пространств спинного и головного мозга, окклюзирующие процессы, различные типы назальной ликвореи, диагностировать кистозные процессы интракраниальной и позвоночно-паравертебральной локализации.

Компьютерная ангиография по своей информативности приближается к обычной ангиографии и в отличие от обычной ангиографии осуществляется без сложных хирургических манипуляций, связанных с проведением внутрисосудистого катетера к исследуемому органу. Преимуществом КТангиографии является то, что она позволяет проводить исследование в амбулаторных условиях в течение 40 -50 минут, полностью исключает риск возникновения осложнений от хирургических манипуляций, уменьшает лучевую нагрузку на пациента и снижает стоимость исследования.

Высокое разрешение спиральной КТ позволяет проводить построение объёмных (3 D) моделей сосудистой системы. По мере совершенствования аппаратуры скорость исследования постоянно сокращается. Так, время регистрации данных при КТ ангиографии сосудов шеи и головного мозга на 6 -спиральном сканере занимает от 30 до 50 с, а на 16 -спиральном - 15 -20 с. В настоящее время это исследование, включая 3 Dобработку, проводят практически в реальном времени.

* Исследование органов брюшной полости (печени, желчного пузыря, поджелудочной железы) проводится натощак. * За полчаса до исследования проводится контрастирование петель тонкого кишечника для лучшего обзора головки поджелудочной железы и гепатобилиарной зоны (необходимо выпить от одного до трёх стаканов раствора контрастного вещества). * При исследовании органов малого таза необходимо сделать две очистительные клизмы: за 6 -8 часов и за 2 часа до исследования. Перед исследованием в течении часа пациенту необходимо выпить большое количество жидкости для заполнения мочевого пузыря. *Подготовка

*В ходе рентгеновской компьютерной томографии пациент подвергается воздействию рентгеновских лучей, как и при обычной рентгенографии, но суммарная доза облучения обычно выше. Поэтому, РКТ должна проводиться только по медицинским показаниям. Нежелательно проведение РКТ в период беременности и без особой необходимости маленьким детям. *Воздействие ионизирующего облучения

*Рентгеновские кабинеты различного назначения должны иметь обязательный набор передвижных и индивидуальных средств радиационной защиты, приведенных в приложении 8 Сан. Пи. Н 2. 6. 1. 1192 -03 «Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований» .

*Рентгеновские кабинеты должны располагаться централизовано на стыках стационара и поликлиники в медицинских учреждениях. Допускается размещение таких кабинетов в пристроях жилых домов и на цокольных этажах.

* Для защиты персонала используют следующие гигиенические требования: для мед. персонала средняя годовая эффективная доза 20 м 3 в(0, 02 зиверта) или эффективная доза за трудовой срок (50 лет) – 1 зиверт.

* Для практически здоровых людей годовая эффективная доза при проведении профилактических медицинских рентгенологических исследований не должна превышать 1 м 3 в (0, 001 зиверт)

Защита от рентгеновского излучения позволяет обезопасить человека только при использовании аппарата в медицинских учреждениях. На сегодняшний день имеется несколько видов защитных средств, которые делятся на группы: средства коллективной защиты, они имеют два подвида: стационарные и передвижные; средства от попадания прямых неиспользуемых лучей; приспособления для обслуживающего персонала; защитные средства, предназначенные для пациентов.

* Время пребывания в сфере источника рентгеновского излучения должно быть минимально. Расстояние от источника рентгеновских лучей. При диагностических исследованиях минимальное расстояние между фокусом рентгеновской трубки и исследуемым составляет 35 см (кожно-фокусное расстояние). Это расстояние обеспечивается автоматически конструкцией просвечивающего и съемочного устройства

* Стены и перегородки состоят из 2 -3 слоев шпаклевки, окрашены специальной медицинской краской. Полы так же выполнены послойно из специальных материалов.

* Потолки гидроизолируются, выкладываются в 2 -3 слоя из спец. материалов со свинцом. Окрашиваются медицинской краской. Достаточное освещение.

* Дверь в рентген-кабинете должна быть металлической с листом свинца. Цвет (как правило) белый или серый с обязательным знаком «опасность» . Рамы окон должны быть выполнены из тех же материалов.

* Для индивидуальной защиты используются: защитный фартук, воротник, жилет, юбка, очки, шапочка, перчатки с обязательным свинцовым покрытием.

* К передвижным средствам защиты относятся: малая и большая ширмы как для персонала так и для пациентов, защитный экран или штора, сделанные из металла или специальной ткани с листом свинца.

При эксплуатации приборов в рентгенкабинете все должно работать исправно, соответствовать регламентированным указаниям по использованию приборов. Обязательны маркировки используемых инструментов.

Однофотонная эмиссионная компьютерная томография особенно широко используется в кардиологической и неврологической практике. Метод основан на вращении вокруг тела пациента обычной гамма-камеры. Регистрация излучения в различных точках окружности позволяет реконструировать секционное изображение. *ОФЭКТ

ОФЭКТ применяется в кардиологии, неврологии, урологии, в пульмонологии, для диагностики опухолей головного мозга, при сцинтиграфии рака молочной железы, заболеваний печени и сцинтиграфии скелета. Данная технология позволяет формировать 3 D-изображения, в отличие от сцинтиграфии, использующей тот же принцип создания гамма-фотонов, но создающей лишь двухмерную проекцию.

В ОФЭКТ применяются радиофармпрепараты, меченные радиоизотопами, ядра которых при каждом акте радиоактивного распада испускают только один гамма-квант (фотон) (для сравнения, в ПЭТ используются радиоизотопы, испускающие позитроны)

*ПЭТ Позитронная эмиссионная томография основывается на использовании испускаемых радионуклидами позитронов. Позитроны, имея одинаковую массу с электронами, заряжены положительно. Испускаемый позитрон сразу же взаимодействует с ближайшим электроном, что приводит к возникновению двух гамма-фотонов, распространяющихся в противоположных направлениях. Эти фотоны регистрируются специальными детекторами. Информация затем передается на компьютер и преобразуется в цифровое изображение.

Позитроны возникают при позитронном бетараспаде радионуклида, входящего в состав радиофармпрепарата, который вводится в организм перед исследованием.

ПЭТ позволяет осуществлять количественную оценку концентрации радионуклидов и тем самым изучать метаболические процессы в тканях.

Выбор подходящего РФП позволяет изучать с помощью ПЭТ такие разные процессы, как метаболизм, транспорт веществ, лиганд-рецепторные взаимодействия, экспрессию генов и т. д. Использование РФП, относящихся к различным классам биологически активных соединений, делает ПЭТ достаточно универсальным инструментом современной медицины. Поэтому разработка новых РФП и эффективных методов синтеза уже зарекомендовавших себя препаратов в настоящее время становится ключевым этапом в развитии метода ПЭТ.

*

Сцинтиграфия - (от лат. scinti - сверкать и греч. grapho - изображать, писать) метод функциональной визуализации, заключающийся во введении в организм радиоактивных изотопов (РФП) и получении двумерного изображения путём определения испускаемого ими излучения

Радиоактивные индикаторы нашли своё применение в медицине с 1911, их родоначальником стал Дьердя де Хевеш, за что получил Нобелевскую премию. С пятидесятых годов направление стало активно развиваться, в практику вошли радионуклиды, появилась возможность наблюдать их скопление в нужном органе, распределение по нёму. Во 2 половине XX века при развитии технологий создания крупных кристаллов был создан новый прибор – гамма-камера, использование которой позволило получать изображения – сцинтиграммы. Этот метод и получил название сцинтиграфии.

*Суть метода Данный метод диагностики заключается в следующем: пациенту вводят, чаще всего внутривенно, препарат, который состоит из молекулы-вектора и молекулы-маркера. Молекула-вектор обладает сродством к определенному органу или целой системе. Именно она отвечает за то, чтобы маркер сконцентрировался именно там, где необходимо. Молекула-маркер обладает способностью испускать γ-лучи, которые, в свою очередь, улавливаются сцинтиляционной камерой и трансформируются в читаемый результат.

*Получаемые изображения Статические - в результате получается плоское (двумерное) изображение. Таким методом чаще всего исследуют кости, щитовидную железу и т. д. Динамические - результат сложения нескольких статических, получения динамических кривых (например при исследовании функции почек, печени, желчного пузыря) ЭКГ-синхронизированное исследование - ЭКГсинхронизация позволяет в томографическом режиме визуализировать сократительную функцию сердца.

Иногда к Сцинтиграфии относят родственный метод однофотонной эмиссионной компьютерной томографии (ОФЕКТ), который позволяет получать томограммы (трёхмерные изображения). Чаще всего таким образом исследуют сердце (миокарда), головной мозг

*Ипользование метода Сцинтиграфия показана при подозрении на наличие какой-то патологии, при уже существующем и выявленном ранее заболевании, для уточнения степени повреждения органов, функциональной активности патологического очага и оценки эффективности проведённого лечения

*Объекты исследования железы внутренней секреции кроветворная система спинной и головной мозг (диагностика инфекционных заболеваний мозга, болезни Альцгеймера, болезни Паркинсона) лимфатическая система лёгкие сердечно-сосудистая система (исследование сократительной способности миокарда, обнаружение ишемических очагов, выявление тромбоэмболии лёгочной артерии) органы пищеварения органы выделительной системы костная система (диагностика переломов, воспалений, инфекций, опухолей костной ткани)

Изотопы специфичны для определенного органа, поэтому для выявления патологии различных органов используются разные радиофармакологические препараты. Для исследования сердца используется Таллий-201 , Технеций-99 m, щитовидной железы – Йод-123, легких – технеций-99 m, Йод-111, печени – Технеций-97 m, и так далее

*Критерии выбора РФП Основным критерием при выборе является соотношение диагностическая ценность/минимальная лучевая нагрузка, которое может проявляться в следующем: Препарат должен быстро достигать исследуемого органа, равномерно распределяться в нем и также быстро и полностью выводиться из организма. Период полураспада у радиоактивной части молекулы должен быть достаточно коротким, чтобы радионуклид не представлял вреда для здоровья пациента. Излучение, которое является характеристическим для данного препарата, должно быть удобно для регистрации. Радиофармацевтические препараты не должны содержать примесей, токсических для человека, и не должны генерировать продукты распада с длительным периодом разложения

*Исследования, требующие специальной подготовки 1. Функциональное исследование щитовидной железы с помощью 131 йодида натрия В течение 3 -х месяцев перед проведением исследования пациентам запрещается: проведение рентгеноконтрастного исследования; прием препаратов, содержащих йод; за 10 дней до исследования отмяются седативные препараты, содержащие йод в высоких концентрациях Больной направляется в отделение радиоизотопной диагностики утром натощак. Через 30 минут после приема радиоактивного йода больной может завтракать

2. Сцинтиграфия щитовидной железы с помощью 131 -йодида натрия Больной направляется в отделение утром натощак. Через 30 минут после приема радиоактивного йода больному дают обычный завтрак. Сцинтиграфию щитовидной железы проводят через 24 часа после приема препарата. 3. Сцинтиграфия миокарда с помощью 201 -таллия хлорида Проводится натощак. 4. Динамическая сцинтиграфия желчевыводящих протоков с хида Исследование проводится натощак. Медсестра стационара приносит в отделение радиоизотопной диагностики 2 сырых яйца. 5. Сцинтиграфия костной системы с пирофосфатом Больной в сопровождении медсестры направляется в отделение изотопной диагностики для проведения внутривенного введения препарата утром. Исследование проводится через 3 часа. Перед началом исследования больной должен опорожнить мочевой пузырь.

*Исследования, не требующие специальной подготовки Сцинтиграфия печени Радиометрическое исследование опухолей кожи. Ренография и сцинтиграфия почек Ангиография почек и брюшной аорты, сосудов шеи и головного мозга Сцинтиграфия поджелудочной железы. Сцинтиграфия легких. ОЦК (определение объема циркулирующей крови) Трансмиссионно-эмиссионное исследование сердца, легких и крупных сосудов Сцинтиграфия щитовидной железы с помощью пертехнетата Флебография Лимфография Определение фракции выброса

*Противопоказания Абсолютным противопоказанием является аллергия на вещества, входящие в состав используемого радиофармацевтического препарата. Относительное противопоказание – беременность. Исследование пациентки кормящей грудью допускается, только важно не возобновлять кормление раньше 24 часов после обследования, точнее после введения препарата

*Побочные эффекты Аллергические реакции на радиоактивные вещества Временное повышение или снижение артериального давления Частые позывы к мочеиспусканию

*Положительные моменты исследования Возможность определить не только внешний вид органа, но и нарушение функций, которое зачастую проявляется гораздо раньше, нежели органические поражения. При таком исследовании результат фиксируется не в виде статической двухмерной картинки, а в виде динамических кривых, томограмм или электрокардиограмм. Исходя из первого пункта, становится очевидным, что сцинтиграфия позволяет количественно оценить поражение органа или системы. Это метод практически не требует подготовки со стороны пациента. Зачастую рекомендуется лишь соблюдать определенную диету и прекратить прием лекарственных препаратов, которые могут мешать визуализации

*

Радиология интервенционная - раздел медицинской радиологии, разрабатывающий научные основы и клиническое применение лечебных и диагностических манипуляций, осуществляемых под контролем лучевого исследования. Формирование Р. и. стало возможным с внедрением в медицину электроники, автоматики, телевидения, вычислительной техники.

Оперативные вмешательства, выполняемые с помощью интервенцион ной радиологии, можно разделить на следующие группы: *восстановление просвета суженных трубчатых структур (артерий, желчевыводящих путей, различных отделов желудочно-кишечного тракта); *дренирование полостных образований во внутренних органах; *окклюзия просвета сосудов *Цели применения

Показания к интервенционным вмешательствам весьма широки, что связано с многообразием задач, которые могут быть решены с помощью методов интервенционной радиологии. Общими противопоказаниями являются тяжелое состояние больного, острые инфекционные болезни, психические расстройства, декомпенсация функций сердечнососудистой системы, печени, почек, при использовании йодсодержащих рентгеноконтрастных веществ - повышенная чувствительность к препаратам йода. *Показания

Развитие интервенционной радиолоии потребовало создания специализированного кабинета в составе отделения лучевой диагностики. Чаще всего это ангиографический кабинет для внутриполостных и внутрисосудистых исследований, обслуживаемый рентгенохирургической бригадой, и состав которой входят рентгенохирург, анестезиолог, специалист по ультразвуковой диагностике, операционная сестра, рентгенолаборант, санитарка, фотолаборант. Работники рентгенохирургической бригады должны владеть методами интенсивной терапии и реанимации.

Рентгеноэндоваскулярные вмешательства, получившие наибольшее признание, представляют собой внутрисосудистые диагностические и лечебные манипуляции, осуществляемые под рентгеновским контролем. Основными их видами являются рентгеноэндоваскулярная дилатация, или ангиопластика, рентгеноэндоваскулярное протезирование и рентгеноэндоваскулярная окклюзия

Экстравазальные интервенционные вмешательства включают эндобронхиальные, эндобилиарные, эндоэзофагальные, эндоуринальные и другие манипуляции. К рентгеноэндобронхиальным вмешательствам относят катетеризацию бронхиального дерева, выполняемую под контролем рентгенотелевизионного просвечивания, с целью получения материала для морфологических исследований из недоступных для бронхоскопа участков. При прогрессирующих стриктурах трахеи, при размягчении хрящей трахеи и бронхов осуществляют эндопротезирование использованием временных и постоянных металлических и нитиноловых протезов.


* В 1986 году Рентген открыл новый вид излучения, и уже в этот же год талантливым ученым удалось сделать рентгеноконтрастными сосуды различных органов трупа. Однако ограниченные технические возможности в течение некоторого времени препятствовали развитию ангиографии сосудов. * В настоящее время ангиография сосудов – это достаточно новый, но интенсивно развивающийся высокотехнологический метод диагностики разнообразных заболеваний сосудов и органов человека.

* На стандартных рентгеновских снимках невозможно увидеть ни артерии, ни вены, ни лимфатические сосуды, ни тем более капилляры, поскольку они поглощают излучение, так же, как и окружающие их мягкие ткани. Поэтому для того, чтобы можно было рассмотреть сосуды и оценить их состояние, применяются специальные методы ангиографии с введением особых рентгеноконтрастных препаратов.

В зависимости от локализации пораженной вены различают несколько видов ангиографии: 1. Церебральная ангиография – исследование сосудов головного мозга. 2. Грудная аортография – исследование аорты и ее ветвей. 3. Ангиопульмонография – изображение легочных сосудов. 4. Брюшная аортография – исследование аорты брюшного отдела. 5. Почечная артериография - выявление опухолей, травм почек и МКБ. 6. Периферическая артериография – оценка состояния артерий конечностей при травмах и окклюзионных заболеваниях. 7. Портография - исследование воротной вены печени. 8. Флебография – исследование сосудов конечностей для определения характера венозного кровотока. 9. Флуоресцентная ангиография – исследование сосудов, применяемое в офтальмологии. *Виды ангиографии

Ангиография применяется для выявления патологий кровеносных сосудов нижних конечностей, в частности стеноз (сужение) или закупорку (окклюзию) артерий, вен и лимфатических путей. Данный метод применяется для: * выявления атеросклеротических изменений в кровеносных путях, * диагностики заболеваний сердца, * оценки функционирования почек; * выявления опухолей, кист, аневризм, тромбов, артериовенозных шунтов; * диагностики болезней сетчатки глаз; * предоперационного исследования перед хирургией на открытом мозге ил сердце. *Показания к исследованию

Метод противопоказан при: * венографии тромбофлебита; * острых инфекционных и воспалительных заболеваниях; * психических заболеваниях; * аллергических реакциях на йодсодержащие препараты или контрастное вещество; * выраженной почечной, печеночной и сердечной недостаточности; * тяжелом состоянии пациента; * дисфункции щитовидной железы; * венерических заболеваниях. Метод противопоказан больным с нарушениями свертываемости крови, а также беременным женщинам из-за негативного воздействия ионизирующей радиации на плод. *Противопоказания

1. Ангиография сосудов является инвазивной процедурой, которая требует врачебный контроль состояния пациента до и после диагностической манипуляции. Из-за этих особенностей, требуется госпитализация больного в стационар и проведение лабораторных исследований: общий анализ крови, мочи, биохимический анализ крови, определение группы крови и резус фактора и ряда других тестов по показаниям. Человеку рекомендуется прекратить принимать ряд препаратов, которые влияют на свертывающую систему крови (например, аспирин) за несколько дней до осуществления процедуры. *Подготовка к исследованию

2. Пациенту рекомендуется воздержаться от приема пищи за 6 -8 часов до начала диагностической процедуры. 3. Сама процедура проводится с применением местных анестетиков, также человеку накануне старта теста обычно назначают седативные (успокоительные) препараты. 4. Перед тем, как провести ангиографию, каждому пациенту делают пробу на аллергическую реакцию к препаратам, используемым при контрастировании. *Подготовка к исследованию

* После предварительной обработки растворами антисептиков по местным обезболиванием выполняют небольшой разрез кожи и находят необходимую артерию. Выполняют ее прокол специальной иглой и через эту иглу вводят металлический проводник до нужного уровня. По этому проводнику до заданной точки вводят специальный катетер, и проводник вместе с иглой удаляют. Все манипуляции, происходящие внутри сосуда, происходят строго под контролем рентгенотелевидения. Через катетер вводят в сосуд рентгеноконтрастное вещество и в этот же момент проводят серию рентгеновских снимков, при необходимости изменяя положение пациента. *Методика ангиографии

*После окончания процедуры катетер удаляют, а на область прокола накладывают очень тугую стерильную повязку. Введенное в сосуд вещество покидает организм через почки в течение суток. А сама процедура продолжается около 40 минут. *Методика ангиографии

* Состояние пациента после процедуры * Больному в течение суток показан постельный режим. За самочувствием пациента следит лечащий доктор, который выполняет измерение температуры тела и осмотр области инвазивного вмешательства. На другой день повязку снимают и при удовлетворительном состоянии человека и отсутствии кроизлияния в районе прокола его отпускают домой. * Для абсолютного большинства людей ангиографическое исследование не несет никакого риска. По имеющимся данным, угроза осложнений при осуществлении ангиографии не превышает 5%.

*Осложнения Среди осложнений наиболее часто встречаются следующие: * Аллергические реакции на рентгенконтрастные вещества (в частности йодсодержащие, поскольку они используются чаще всего) * Болезненные ощущения, отечности и гематомы на месте введения катетера * Кровотечение после пункции * Нарушение функционирования почек вплоть до развития почечной недостаточности * Травма сосуда или тканей сердца * Нарушение сердечного ритма * Развитие сердечнососудистой недостаточности * Инфаркт или инсульт