Меню
Бесплатно
Главная  /  Лекарства и витамины по алфавиту  /  Атомные орбитали химия. Атомная орбиталь

Атомные орбитали химия. Атомная орбиталь

При обсуждении химических свойств атомов и молекул - строения и реакционной способности - большую помощь в качественном решении того или иного вопроса может оказать представление о пространственной форме атомных орбиталей. В общем случае АО записываются в комплексной форме, но, используя линейные комбинации комплексных функций, относящихся к одному и тому же уровню энергии с главным квантовым числом п и с одинаковым значением орбитального момента /, можно получить выражения в действительной форме, которые можно изобразить в реальном пространстве.

Рассмотрим последовательно ряд АО в атоме водорода.

Наиболее просто выглядит волновая функция основного состояния 4^. Она имеет сферическую симметрию

Величина а определяется выражением где величина

называется радиусом Бора. Боровский радиус говорит о характерных размерах атомов. Величина 1/ос определяет масштаб характерного спада функций в одноэлектронных атомах

Из (ЗЛО) видно, что размер одноэлектронных атомов сжимается по мере роста заряда ядра обратно пропорционально значению Z. Например, в атоме Не + волновая функция будет спадать в два раза быстрее, чем в атоме водорода с характерным расстоянием, равным 0,265 А.

График зависимости *F ls от расстояния приведен на рис. 3.3. Максимум функции *Fj находится в нуле. Нахождение электрона внутри ядра не должно вызывать большого удивления, так как ядро нельзя представлять в виде непроницаемой сферы.

Максимальная вероятность обнаружить электрон на некотором расстоянии от ядра в основном состоянии атома водорода приходится на г = а 0 = 0,529 А. Эту величину можно найти следующим образом. Вероятность найти электрон в некотором малом объеме А V равна |*Р| 2 ДЙ. Объем AV полагаем настолько малым, что значение волновой функции можно считать постоянным в пределах этого малого объема. Нас интересует вероятность нахождения электрона на расстоянии г от ядра в тонком слое толщиной Аг. Так как вероятность нахождения электрона на расстоянии г не зависит от направления и конкретное направление нас не интересует, то нужно найти вероятность пребывания электрона в очень тонком сферическом слое толщиной Аг. Так как значение | V F| 2 легко вычисляется, нам необходимо

Рис. 3.3. Зависимость *F 1s от расстояния. Значения функции нормированы на ее величину в при г = О

Рис. 3.4. Схема вычисления объема сферического слоя

найти объем сферического слоя, который обозначим через А К Он равен разности объемов двух шаров с радиусами г и г + Аг (рис. 3.4):

Так как А г мало по сравнению с г, то при вычислении величины (г + Аг) 3 можно ограничиться первыми двумя слагаемыми. Тогда для объема сферического слоя получим

Последнее выражение можно получить и более простым способом. Так как А г мало по сравнению с г, то объем сферического слоя можно принять равным произведению площади сферического слоя на его толщину (см. рис. 3.4). Площадь сферы равна 4кг 2 , а толщина А г. Произведение этих двух величин дает то же выражение (3.11).

Итак, вероятность W найти электрон в этом слое равна

Выражение для *P ls взято из приложения 3.1. Если считать величину Аг постоянной, то максимум приведенной функции наблюдается при г = а 0 .

Если хотят узнать, какова вероятность W обнаружить электрон в объеме V, то необходимо проинтегрировать плотность вероятности обнаружения электрона по этой области пространства в соответствии с выражением (3.6).

Например, какова вероятность обнаружить электрон в атоме водорода в сферической области пространства с центром в ядре и с радиусом й 0 . Тогда

Здесь величина d V в процессе вычислений заменена на 4кг 1 dr по аналогии с (3.11), так как волновая функция зависит только от расстояния и поэтому интегрировать по углам не нужно ввиду отсутствия угловой зависимости интегрируемой функции.

Качественное представление о распределении волновой функции в пространстве дает изображение атомных орбиталей в виде облаков, причем, чем интенсивнее цвет, тем выше значение Ч"-функции. Орбиталь будет выглядеть так (рис. 3.5):

Рис. 3.5.

Орбиталь 2p z B виде облака изображена на рис. 3.6.

Рис. 3.6. Изображение 2р г -орбитали атома водорода в виде облака

Аналогичным образом в виде облака будет выглядеть распределение электронной плотности, которое можно найти, умножив плотность вероятности I"Fj 2 на заряд электрона. В этом случае иногда говорят о размазывании электрона. Однако это ни в коей мере не означает, что мы имеем дело с размазыванием электрона по пространству - никакого реального размазывания электрона по пространству не происходит, и поэтому атом водорода нельзя представлять в виде ядра, погруженного в реальное облако отрицательного заряда .

Однако такие изображения в виде облаков используют редко, а гораздо чаще используют линии, чтобы создать представление об угловой зависимости Ч"-функций. Для этого рассчитывают значения Ч"-функций на сфере, проведенной на некотором расстоянии от ядра. Затем рассчитанные значения откладывают на радиусах с указанием знака Ч"-функций для наиболее информативного для данной Ч"-функций плоского сечения. Например, орбиталь Is обычно изображают в виде окружности (рис. 3.7).

Рис.

На рис. 3.8 2/> г -орбиталь построена на сфере некоторого радиуса. Для получения пространственной картины необходимо произвести вращение фигуры относительно оси z. Индекс «z» при записи функции указывает на ориентацию функции вдоль оси «г». Знаки «+» и «-» соответствуют знакам Ч"-функций. Значения 2/? г -функции положительны в той области пространства, где ^-координата положительна, и отрицательны в той области, где ^-координата отрицательна.

Рис. 3.8. Форма 2p z -орбитали. Построена на сфере некоторого радиуса

Аналогичная ситуация и в случае остальных /ьорбиталей. Например, 2/? х -орбиталь ориентирована вдоль оси х и положительна в той части пространства, где координата х положительна, и ее значения отрицательны там, где значения координаты х отрицательны (рис. 3.9).

Изображение волновых функций с указанием знака имеет важное значение для качественного описания реакционной способности химических соединений, и поэтому изображения типа приведенных на рис. 3.9 встречаются в химической литературе наиболее часто.

Рассмотрим теперь d-орбитали (рис. 3.10). Орбитали d xy , d xz , d yz , выглядят эквивалентным образом. Их ориентация и знаки определяются нижними индексами: индекс ху показывает,

Рис. 3.9. Форма 2р х - орбитали. Построена на сфере некоторого радиуса


что орбиталь ориентирована под углами в 45° по отношению к осям х и у и что знак У-функции положителен там, где произведение индексов х и у положительно.


Рис. 3.10.

Похожим образом дело обстоит и с остальными ^/-орбиталями. Изображение ^/-орбиталей, приведенное на рис. 3.10, наиболее часто встречается в литературе. Видно, что орбитали d , d x2 _ y2 , d z2 не являются эквивалентными. Эквивалентными являются только орбитали d , d xz , d yz . Если для описания структуры молекулы необходимо использовать пять эквивалентных ^/-орбиталей, то их можно построить, используя линейные комбинации орбиталей .

Атомная орбиталь - одноэлектронная волновая функция, полученная решением уравнения Шрёдингера для данного атома; задаётся: главным n, орбитальным l, и магнитным m - квантовыми числами. Единственный электрон атома водорода образует вокруг ядра сферическую орбиталь - шарообразное электронное облако, вроде неплотно намотанного клубка пушистой шерсти или ватного шарика.

Сферическую атомную орбиталь ученые договорились называть s-орбиталью . Она самая устойчивая и располагается довольно близко к ядру. Чем больше энергия электрона в атоме, тем быстрее он вращается, тем сильнее вытягивается область его пребывания и наконец превращается в гантелеобразную p-орбиталь :

Гибридизация орбиталей - гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.

5.Тетраэдрическая модель атома углерода. Теория строения Бутлерова

Теория химического строения органических веществ была сформулирована А. М. Бутлеровым в 1861 году.

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

Основные представления о химическом строении, заложенные Бутлеровым, были дополнены Вант-Гоффом И Ле-Белем (1874), которые развили идею о пространственном расположении атомов в молекуле органич. в-ва и поставили вопрос о пространственной конфигурации и конформации молекул. Работа Вант-Гоффа положила начало направлению орг. Химии – стереохимии – учению о пространственном строении.Вант-Гофф предлоил тетраэдрическую модель атома углерода – четыре валентности атома в углерода в метане направлены к четырем углам тетраэдра, в центре которого находится углеродный атом, а на вершинах – атомы водорода.

Непредельные карбоновые кислоты

Химические свойства.
Химические свойства непредельных карбоновых кислот обусловлены как свойствами карбоксильной группы, так и свойствами двойной связи. Специфическими свойствами обладают кислоты с близко расположенной от карбоксильной группы двойной связью - альфа, бета-непредельные кислоты. У этих кислот присоединение галогеноводородов и гидратация идут против правила Марковникова:

СН 2 =СН-СООН + НВr -> СН 2 Вr-СН 2 -СООН

При осторожном окислении образуются диоксикислоты:

СН 2 =СН-СООН + [О] + Н 2 0 -> НО-СН 2 -СН(ОН)-СООН

При энергичном окислении происходит разрыв двойной связи и образуется смесь разных продуктов, по которым можно установить положение двойной связи. Олеиновая кислота С 17 Н 33 СООН - одна из важнейших высших непредельных кислот. Это - бесцветная жидкость, затвердевает на холоде. Ее структурная формула: СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН.

Производные карбоновых кислот

Производные карбоновых кислот - это соединения, в которых гидроксильная группа карбоновой кислоты замещена другой функциональной группой.

Просты́е эфи́ры - органические вещества, имеющие формулу R-O-R", где R и R" - углеводородные радикалы. Следует, однако, учитывать, что такая группа может входить в состав других функциональных групп соединений, не являющихся простыми эфирами

Сло́жные эфи́ры (или эсте́ры ) - производные оксокислот (как карбоновых, так и неорганических) с общей формулой R k E(=O) l (OH) m , где l ≠ 0, формально являющиеся продуктами замещения атомов водорода гидроксилов -OH кислотной функции на углеводородный остаток (алифатический, алкенильный, ароматический или гетероароматический); рассматриваются также как ацилпроизводные спиртов. В номенклатуре IUPAC к сложным эфирам относят также ацилпроизводные халькогенидных аналогов спиртов (тиолов, селенолов и теллуролов) .

Отличаются от простых эфиров (этеров), у которых два углеводородных радикала соединены атомом кислорода (R 1 -O-R 2)

Ами́ды - производные оксокислот (как карбоновых, так и минеральных) R k E(=O) l (OH) m , (l ≠ 0), формально являющиеся продуктами замещения гидроксильных групп -OH кислотной функции на аминогруппу (незамещенную и замещенную); рассматриваются также как ацилпроизводные аминов. Соединения с одним, двумя или тремя ацильными заместителями у атома азота называются первичными, вторичными и третичными амидами, вторичные амиды именуются также имидами.

Амиды карбоновых кислот - карбоксамиды RCO-NR 1 R 2 (где R 1 и R 2 - водород, ацил либо алкильный, арильный или другой углеводородный радикал) обычно именуются амидами, в случае других кислот в соответствии с рекомендациями IUPAC при именовании амида в качестве префикса указывается название кислотного остатка, например, амиды сульфокислот RS(=O 2 NH 2 именуются сульфамидами.

Хлорангидри́д карбо́новой кислоты́ (ацилхлорид) - производное карбоновой кислоты, в которой гидроксильная группа -OH в карбоксильной группе -COOH заменена на атом хлора. Общая формула R-COCl. Первый представитель с R=H (хлористый формил) не существует, хотя смесь CO и HCl в реакции Гаттермана - Коха ведёт себя подобно хлорангидриду муравьиной кислоты.

Получение

R-COOH + SOCl 2 → R-COCl + SO 2 + HCl

Нитри́лы - органические соединения общей формулы R-C≡N, формально являющиеся C-замещенными производными синильной кислоты HC≡N

Капрон (поли-ε-капроамид, найлон-6, полиамид 6)- синтетическое полиамидное волокно, получаемое из нефти, продукт поликонденсации капролактама

[-HN(CH 2) 5 CO-] n

В промышленности его получают путем полимеризации производного

Нейло́н (англ. nylon ) - семейство синтетических полиамидов, используемых преимущественно в производстве волокон.

Наиболее распространены два вида нейлона: полигексаметиленадипинамид (анид (СССР/Россия), найлон 66 (США)), часто называемый собственно нейлоном и поли-ε-капроамид (капрон (СССР/Россия), найлон 6 (США)). Известны также другие виды, например, поли-ω-энантоамид (энант (СССР/Россия), найлон 7 (США)) и поли-ω-ундеканамид (ундекан (СССР/Россия), найлон 11 (США), рильсан (Франция, Италия)

Формула волокна из анида: [-HN(CH 2) 6 NHOC(CH 2) 4 CO-] n . Анид синтезируется поликонденсацией адипиновой кислоты и гексаметилендиамина. Для обеспечения стехиометрического отношения реагентов 1:1, необходимого для получения полимера с максимальной молекулярной массой, используется соль адипиновой кислоты и гексаметилендиамина (АГ-соль ):

R = (CH 2) 4 , R" = (CH 2) 6

Формула волокна из капрона (найлона-6): [-HN(CH 2) 5 CO-] n . Синтез капрона из капролактама проводится гидролитической полимеризацией капролактама по механизму «раскрытие цикла - присоединение»:

Пластмассовые изделия могут изготавливаться из жёсткого нейлона - эколона, путём впрыскивания в форму жидкого нейлона под большим давлением, чем достигается бо́льшая плотность материала.

Классификафия


КЕТОКИСЛОТЫ - органические вещества, в состав молекул которых входят карбоксильные (COOH-) и карбонильные (-CO-) группы; служат предшественниками многих соединений, выполняющих важные биологические функции в организме. Существенные нарушения обмена веществ, имеющие место при ряде патологических состояний, сопровождаются повышением концентрации в организме человека тех или иных кетокислот

кето енольная таутомерия

Методы получения Альфа и Бета кетокислот

α-Кетокислоты получают окислением α-гидроксикислот.

β-Кетокислоты ввиду своей неустойчивости получают из сложных эфиров конденсацией Кляйзена.

В органической химии термин «реакция окисления» подразумевает, что окисляется именно органическое соединение, при этом окислителем в большинстве случаев является неорганический реагент.

Алкены

KMnO 4 и H 2 O (нейтральная среда)

3СH2=CH2 + 2KMnO 4 + 4H 2 O = 3C 2 H 4 (OH) 2 + 2MnO 2 + 2KOH - полное уравнение

(кислая среда)

идет разрыв двойной связи:

R-СH 2 =CH 2 -R + [O] → 2R-COOH - схематичное уравнение

Алкиларены

Эитлбензол- алкиларен

Кетоны

Кетоны к действию окислителей весьма устойчивы и окисляюся лишь сильными окислителями при нагревании. В процессе окисления происходит разрыв связей C-C по обе стороны карбонильной группы и в общем случае получается смесь четырех карбоновых кислот:

Окислению кетона предшествует его енолизация, которая может проходить как в щелочной, так и в кислой среде:

Ви́нная кислота́ (диоксиянтарная кислота, тартаровая кислота, 2, 3-дигидроксибутандиовая кислота) НООС-СН(ОН)-СН(ОН)-СООН - двухосновная оксикислота. Соли и анионы винной кислоты называют тартратами.

Известны три стереоизомерные формы винной кислоты: D-(-)-энантиомер (слева вверху), L-(+)-энантиомер (справа вверху) и мезо -форма (мезовинная кислота):


Диастереомеры - стереоизомеры, не являющиеся зеркальными отражениями друг друга . Диастереомерия возникает, когда соединение имеет несколько стереоцентров. Если два стереоизомера имеют противоположные конфигурации всех соответствующих стереоцентров, то они являются энантиомерами.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-13

Орбитали атома вододрода.

Когда рассматриваются волновые функции для электронов в отдельных атомах, эти функции называют атомными орбиталями (сокращенно АО). Экспериментальные доказательства существования атомных орбиталей можно получить из атомных спектров. Например, при электрическом разряде в газообразном водороде молекулы Н 2 диссоциируют на атомы, а атомы испускают свет строго определенных частот, которые группируются сериями: в видимой области (так называемая серия Бальмера), ультрафиолетовой (серия Лаймана), инфракрасной (серия Пашена). Еще в доквантовый период было замечено, что все серии удовлетворяют одному простому уравнению:

атомный молекулярный орбиталь квантование

Атом водорода трехмерен, поэтому уравнение Шредингера должно включать кинетическую энергию во всех трех измерениях и будет иметь несколько более сложный вид, чем представленное в разделе 1.1 этой главы уравнение для одномерного движения. При его решении с наложением граничных условий, которые вытекают из вероятностной интерпретации волновой функции, были получены следующие выводы.

1. Необходимо принять, что существуют три безразмерных квантовых числа, которые обозначают символами п, / и т. Появление квантового числа п вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые

числа / и т связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число / характеризует величину углового момента, а число т - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n - 1, 2, 3.;

2. Энергия электрона, вообще говоря, должна зависеть от всех трех квантовых чисел, или, по крайней мере, от двух, однако уникальной особенностью атома водорода (но не других атомов) является то, что энергия электрона зависит только от п. По этой причине п называется главным квантовым числом. (Так, для п = 3l может принимать значения 0, 1 и 2, но энергия электрона остается постоянной.) Разрешенными энергиями будут энергии, имеющие вид Еп = R/п2.


Атомные орбит али атома водорода имеют очень важное значение, так как они показывают, как распределен электрон (или электронная плотность) в пространстве. Амплитуда АО ш (r) различна в разных местах пространства, а вероятность нахождения электрона в некоторой бесконечно малой области dф вокруг точки r составляет. Пространственное распределение электрона можно изобразить путем указания величины с помощью разной плотности штриховки на диаграмме. Распределение плотности в некоторых АО водорода представлено на рис.1.1

Орбиталь основного состояния атома водорода очень проста: она сферически симметрична и ее плотность экспоненциально спадает по мере удаления от ядра. Следовательно, наиболее вероятно найти электрон около ядра, где ц/ и, таким образом, у? ^ максимальны. Это согласуется спред став легшем, что электрон для достижения наименьшей потенциальной энергии должен стремиться к ядру. Однако орбнталь не совсем "прижата" к ядру, а распространяется и на области, достаточно удаленные от него. Такая ситуация возникает вследствие того, что большое значение имеет не только потенциальная, но и кинетическая энергия электрона. Последнюю нельзя представить как кинетическую энергию движения по орбите вокруг ядра, которая приводит к появлению центробежной силы, удерживающей электрон вдали от ядра, поскольку угловой момент электрона в основном состоянии атома водорода равен нулю. (При п= 1 может быть только одно квантовое число величины углового момента: /=0, и, следовательно, равна нулю.) Таким образом, в классическом понимании электрон в основном состоянии атома водорода как бы не вращается вокруг ядра, а просто качается вдоль радиуса. С этим и связана его кинетическая энергия. С точки зрения квантовой теории, кинетическая энергия электрона связана с длиной волны электрона, распространяющейся в радиальном направлении. Если орбнталь "поджимается" к ядру, длина волны в радиальном направлении неизбежно уменьшается, и поэтому кинетическая энергия возрастает (разд.1.1). Реальная орбнталь является результатом компромисса между умеренно низкой потенциальной энергией и умеренно высокой кинетической энергией. Ближе к ядру электронная плотность выше, но она имеется и на удаленном от ядра расстоянии.

Рис.1.1

Все орбитали с нулевым угловым моментом называются s-орбиталями. Орбиталь низшей энергии называется 1s-орбиталью. Если п= 2 и 7=0, то это 2s-орбиталь. Ее энергия выше, чем энергия 1s-орбитали, по двум причинам. Во-первых, она имеет радиальный узел (рис.1.2), представляющий собой сферическую поверхность, внутри и снаружи которой волновая функция имеет разные знаки, и на самой этой поверхности электронная плотность равна нулю. Появление узлов на любой орбитали повышает энергию электрона, занимающего эту орбиталь, и чем больше узлов, тем энергия орбитали выше.

Это связано с тем, что с увеличением числа узлов длина волны электрона становится короче, т.е. большее число полуволи приходится на одну и ту же область пространства и поэтому его кинетическая энергия возрастает. Во - вторых, повышение энергии 2s-орбитали по сравнению с 1s-орбиталью связано с тем, что 2s-орбиталь простирается на расстояние, более далекое от ядра, и поэтому потенциальная энергия электрона на ней выше, чем на 1s-орбитали. Аналогичные замечания можно сделать и относительно более высоко лежащих s-орбиталей: и т.д.

Рис.1.2

Орбиталь с п= 1 не имеет узлов. Орбитали с п=2 имеют один узел, с п=3 - два узла и т.д. Относительно операции симметрии инверсии (центр инверсии совпадает с центром ядра) все s-орбитали симметричны, все s-орбитали антисимметричны, все s-орбитали симметричны и т.д.

Если n=0, единственным значением, разрешенным для l , является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2л-орбит аль) или 1. Если n= 1, атомные орбитали носят название р- орбнгалей. При n= 2 и l = 1 мы имеем 2р-орбнталь. Она отличается от 2s-орбнтали тем, что занимающий ее электрон обладает орбитальным угловым моментом величиной (2) Угловой момент является следствием наличия углового узла (рис.1.2), который, как говорят, "вводит кривизну в угловое изменение волновой функции" (шар превращается в гантель). Наличие орбитального углового момента оказывает сильное влияние на радиальную форму орбитали. В то время как все 5-орбит али у ядра имеют ненулевое значение,1s-орбитали там отсутствуют. Это можно представить как отбрасывание электрона от ядра орбитальным угловым моментом. Сила кулоновского притяжения электрона к ядру пропорциональна 1 /г где г - расстояние от ядра, а центробежная сила, отталкивающая электроны от ядра, пропорциональна r 3 (3 - угловой момент). Поэтому, если угловой момент ^0, при очень малых г центробежная сила превосходит кулоновскую. Этот центробежный эффект проявляется также в АО с l =2, которые называются 1s-орбиталями, l =3 (s-орбитали) и более высоких орбиталях (Ј-, /? - , у-орбитали). Все эти орбит али, из-за того, что /^0, имеют нулевую амплитуду у ядра и, следовательно, вероятность обнаружить там электроны равна нулю.

У 2/? - орбнтали нет радиального узла, но зато 3/? - орбиталь его имеет. Эскизы нижних атомных орбит алей, иллюстрирующие свойства и симметрию АО (но не вероятностное распределение электрона внутри орбитали, как на рис.1.1), приведены на рис.1.2 Светлые и затемненные области - это места, где волновая функция имеет разные знаки. Поскольку выбор знака произволен, безразлично, будем ли мы соотносить затемненные области с положительным, а светлые области с отрицательным знаком волновой функции, или наоборот. Граница между светлой и темной областями орбнталей - это узел, т.е. то место, где волновая функция равна нулю, или, другими словами, место, где волновая функция меняет знак на противоположный. Чем больше узлов, тем выше энергия электрона, занимающего данную АО.

Поскольку для орбиталей l=0, квантовое число т может принимать значения +1, 0 и - 1. Разные значения т соответствуют орбнталям с различными ориеитациями орбитального углового момента, р-Орбиталь с т=0 имеет нулевую проекцию углового момента на ось 2 (рис.1.2), и по этой причине ее называют р 2 -орбиталью. Вид р 2 - орбнтали (см. рис.1.1 и 1.2) говорит о том, что электронная плотность "собрана в заводи" вдоль оси 2. В этом случае существует горизонтальная узловая плоскость, проходящая через ядро, и вероятность найти электрон в этой плоскости равна нулю. Две другие р - орбнтали можно представить аналогичными картинами с ориентацией "лопастей" вдоль осей хну (см. рис.1.1), поэтому они называются р х и р у - орбнталями.

Если /? =3, то / может принимать значения 0, 1 и 2. Это прнаоднг к одной 3^-орбнгали, трем 3/? - орбнгалям и пяти 3^-орбнгалям.3б/-Орбнталей пять, поскольку при / =2 т может принимать значения 2, 1, 0, - 1 и - 2. Все Ъй - орбнтали имеют нулевую амплитуду у ядра. У них нет радиальных узлов (у 4с1 - орбнталей радиальные узлы появляются), но у каждой есть две узловые плоскости (см. рис.1.2).

Выше было сказано, что энергия электрона в атоме водорода зависит от главного квантового числа орбнтали, которую он занимает и не зависит от его орбитального углового момента. Таким образом, в атоме водорода электрон на 2л-орбнтали имеет ту же энергию, что и на любой из 2р-орбит алей. Если различные орбнтали имеют одинаковую энергию, они называются вырожденными . Вырождение атома водорода представляет собой нечто исключительное и в физике объясняется особой формой его кулоновского потенциала.

Волновую функцию (7), описывающую состояние электрона, называют атомной орбиталью (АО).

Квантовые числа. В квантовой механике каждая АО определяется тремя квантовыми числами.

Главное квантовое число n . Может принимать целочисленные значения от 1 до ∞. Главное квантовое число определяет:

номер энергетического уровня;

интервал энергий электронов, находящихся на данном уровне;

размеры орбиталей;

число подуровней данного энергетического уровня (первый уровень состоит из одного подуровня, второй – из двух, третий – из трех и т.д.);

В Периодической системе элементов максимальному значению главного квантового числа соответствует номер периода.

Орбитальное квантовое число l .Определяет орбитальный момент количества движения (импульс) электрона, точное значение его энергии и форму орбиталей. Может принимать значения 0, 1, 2, 3, …, (n -1).

Атомная орбиталь – геометрический образ одноэлектронной волновой функции ψ, представляющий собой область наиболее вероятного пребывания электрона в атоме. Она ограничивает область пространства, в которой вероятность нахождения электрона имеет определенное значение (90 …99 %). Иногда орбиталью называют граничную поверхность этой области, а на рисунках, как правило, изображают сечение этой области плоскостью, проходящей через начало координат и лежащей в плоскости рисунка. В начало координат помещают центр ядра атома. Понятие «орбиталь», в отличие от «орбита», не подразумевает знания точных координат электрона. Орбитальное квантовое число определяет форму атомной орбитали. При l =0 это сфера, при l =1 – объемная восьмерка (гантель), при l =2 – четырехлепестковая розетка.

Каждому значению главного квантового числа соответствует n значений орбитального квантового числа l (табл. 1). Например, если n =1, то l принимает только одно значение (l =0), n =2 – два значения: 0 и 1 и т.д. Каждому численному значению l соответствует определенная геометрическая форма орбиталей и приписывается буквенное обозначение. Первые четыре буквы обозначения имеют историческое происхождение и связаны с характером спектральных линий. s , p , d , f – первые буквы английских слов, использованных для названия спектральных линий: sharp (резкий), principal (главный), diffuse (диффузный), fundamental (основной). Обозначения других орбиталей приведены в алфавитном порядке: g , h , …

Таблица 1

Значения главного и орбитального квантовых чисел

Орбитальное квантовое число l Главное квантовое число n
Значение Буквенное обозначение s s p s p d s p d f s p d f g

Обозначение любого подуровня определяется двумя квантовыми числами – главным (при записи указывается численное значение) и орбитальным (при записи указывается буквенное обозначениеорбитальным ()ается численное значение двумя квантовыми числами - главным). Например, энергетический подуровень, для которого n =2 и l =1, следует обозначить так: -подуровень. Все орбитали с одинаковым значением l имеют одинаковую геометрическую формулу и в зависимости от значений главного квантового числа различаются размерами. Например, все орбитали, для которых l =0 (s -орбитали) являются сферически симметричными, различаются размерами в зависимости от значения главного квантового числа. Чем выше значение n , тем больше размеры орбиталей.



Магнитное квантовое число m l .Определяет возможные значения проекции орбитального момента количества движения электрона на фиксированное направление в пространстве (например, на ось z ). Оно принимает отрицательные и положительные значения l , включая нуль. Общее число значений равно 2l +1:

От значения магнитного квантового числа зависит взаимодействие магнитного поля, создаваемого электроном, с внешним магнитным полем. Если нет внешнего магнитного поля, то энергия электрона в атоме не зависит от m l . В этом случае электроны с одинаковыми значениями n и l , но с разными значениями m l обладают одинаковой энергией. Если существует внешнее магнитное поле – энергия электронов с разными m l различается.

В общем случае магнитное квантовое число характеризует ориентацию АО в пространстве относительно внешней силы. Магнитное квантовое число определяет ориентацию орбитального углового момента относительно некоторого фиксированного направления.

Общее число возможных значений m l соответствует числу способов расположения орбиталей данного подуровня в пространстве, то есть общему числу орбиталей на данном подуровне (табл. 2).

Таблица 2

Число орбиталей на подуровне

Орбитальному квантовому числу l =0 отвечает единственное значение магнитного квантового числа m l =0. Эти значения l и m l характеризуют все s -орбитали, которые имеют форму сферы. Так как в этом случае магнитное квантовое число принимает только одно значение, то каждый s-подуровень состоит только из одной орбитали. Рассмотрим любой р -подуровень. При l =1 орбитали имеют форму гантелей (объемные восьмерки), магнитное квантовое число принимает следующие значения: m l = -1, 0, +1. Следовательно, р -подуровень состоит из трех АО, которые располагаются вдоль осей координат, их обозначают p x , p y , p z соответственно (рис. 1).

Рис. 1. Пространственная форма s- и р-атомных орбиталей.

Для d -подуровня l =2, m l = -2, -1, 0, +1, +2 (всего 5 значений), и любой d -подуровень состоит из пяти атомных орбиталей, которые определенным образом расположены в пространстве (рис. 2), и обозначаются соответственно.

Рис. 2. Пространственная форма d-атомных орбиталей.

Четыре из пяти d- орбиталей имеют форму четырехлепестковых розеток, каждая из которых образована двумя гантелями, пятая АО представляет собой гантель с тором в экваториальной плоскости (-орбиталь) и расположена вдоль оси z . Лепестки орбитали расположены вдоль осей x и y. Лепестки орбиталей расположены симметрично между соответствующими осями.

Четвертый энергетический уровень состоит из четырех подуровней – s , p , d и f . Первые три из них аналогичны описанным выше, а четвертый f -подуровень состоит из семи АО, пространственная форма которых достаточно сложна и в данном разделе не рассматривается.

С. Гаудсмит и Дж. Уленбек для описания некоторых тонких эффектов в спектре атома водорода в 1925 г. выдвинули гипотезу о наличии собственного момента импульса электрона, который назвали спином . Спин нельзя выразить через координаты и импульсы, у него нет аналога в классической механике. Спиновое число s электрона принимает только одно значение, равное Проекция вектора спина на определенное направление внешнего поля (например, на ось z ) определяется спиновым квантовым числом m S , которое может принимать два значения: m S =

Понятие «спин» введено для характеристики специфического квантового свойства электрона. Спин – это проявление релятивистских эффектов на микроскопическом уровне.

Электрон имеет четыре степени свободы. Спиновое квантовое число принимает только дискретные значения: Таким образом, состояние электрона в атоме определяется набором значений четырех квантовых чисел: n , l , m l , m S .

Обозначение и структура электронных энергетических уровней . Определим некоторые термины, которые используются для разъяснения физического смысла квантовых чисел. Группа орбиталей, имеющих одинаковое значение орбитального квантового числа, образует энергетический подуровень . Совокупность всех орбиталей с одинаковым значением главного квантового числа образует энергетический уровень .

Структуру атомных электронных уровней можно изобразить двояко: в виде электронных формул и электронографических диаграмм. При написании электронных формул используют два квантовых числа n и l: первый уровень – 1s ; второй – 2s , 2p ; третий – 3s , 3p , 3d ; четвертый – 4s , 4p , 4d , 4f и т.д. (табл.3).

Таблица 3

Структура электронных энергетических уровней атома

Более полно строение электронных уровней описывается с использованием трех квантовых чисел: n , l , m l . Каждая АО условно изображается в виде квантовых ячеек, около которой ставится номер уровня и символ подуровня.

Физические и химические свойства атомов, а следовательно, и вещества в целом во многом определяются особенностями электронного облака вокруг атомного ядра. Положительно заряженное ядро притягивает отрицательно заряженные электроны. Электроны вращаются вокруг ядра так быстро, что точно определить их местонахождение не представляется возможным. Движущиеся вокруг ядра электроны можно сравнить с облаком или туманом, в одних местах более или менее плотным, в других – совсем разреженным. Форму электронного облака, а также вероятность нахождения электрона в любой его точке можно определить, решив соответствующие уравнения квантовой механики . Области наиболее вероятного нахождения электронов называют орбиталями. Каждая орбиталь характеризуется определенной энергией, и на ней может находиться не более двух электронов. Обычно вначале заполняются ближайшие к ядру самые низкоэнергетические орбитали, затем орбитали с более высокой энергией и т.д.

Совокупность электронных орбиталей с близкой энергией образует слой (т.е. оболочку, или энергетический уровень). Энергетические уровни нумеруют, начиная от ядра атома: 1, 2, 3, ... . Чем дальше от ядра, тем просторнее слои и тем больше орбиталей и электронов они могут вместить. Так, на n -м уровне n 2 орбиталей, и на них могут располагаться до 2 n 2 электронов. У известных элементов электроны находятся только на первых семи уровнях, и лишь первые четыре из них бывают заполненными.

Существует четыре типа орбиталей, их обозначают s , p , d и f . На каждом уровне (слое) имеется одна s -орбиталь, которая содержит наиболее прочно связанные с ядром электроны. За ней следуют три p -орбитали, пять d -орбиталей и, наконец, семь f -орбиталей.

Оболочка n

Число орбиталей n 2

Тип орбиталей

Число электронов 2n 2

s , p

s , p , d

s , p , d , f

s - Орбитали имеют форму сферы, p – форму гантели или двух соприкасающихся сфер, у d -орбиталей – 4 «лепестка», а у f -орбиталей – 8. В разрезе эти орбитали выглядят примерно так, как показано на рисунке.

Три р -орбитали ориентированы в пространстве вдоль осей прямоугольной системы координат и обозначаются соответственно p x , p y и p z ; d - и f -орбитали тоже располагаются под определенными углами друг к другу; сферические s -орбитали пространственной ориентации не имеют.

Каждый следующий элемент в периоде имеет атомный номер, на единицу превышающий номер предыдущего элемента, и содержит на один электрон больше. Этот дополнительный электрон занимает следующую орбиталь в порядке возрастания. Нужно иметь в виду, что электронные слои диффузны и энергия у некоторых орбиталей наружных слоев ниже, чем у внутренних. Поэтому, например, сначала заполняется s -орбиталь четвертого уровня (4 s -орбиталь), и только после нее завершается заполнение 3 d -орбитали. Порядок заполнения орбиталей, как правило, следующий: 1 s , 2 s , 2 p , 3 s , 3 p , 4 s , 3 d , 4 p , 5 s , 4 d , 5 p , 6 s , 4 f , 5 d , 6 p , 7 s . В записи, которую используют для представления электронной конфигурации элемента, верхний индекс при букве, обозначающей орбиталь, указывает число электронов на этой орбитали. Например, запись 1 s 2 2 s 2 2 p 5 означает, что на 1 s -орбитали атома находится два электрона, на 2 s -орбиталях – два, на 2 р – пять электронов. Нейтральные атомы, имеющие на внешней электронной оболочке 8 электронов (т.е. заполнены s - и р -орбитали), настолько стабильны, что практически не вступают ни в какие химические реакции. Таковы атомы инертных газов. Электронная конфигурация гелия 1 s 2 , неона – 2 s 2 2 p 6 , аргона – 3 s 2 3 p 6 , криптона – 4 s 2 3 d 10 4 p 6 , ксенона – 5 s 2 4 d 10 5 p 6 и, наконец, радона – 6 s 2 4 f 14 5 d 10 6 p 6 .