Меню
Бесплатно
Главная  /  Лекарства и витамины по алфавиту  /  Распространение волн на неглубокой воде. Волны на поверхности воды

Распространение волн на неглубокой воде. Волны на поверхности воды

Пока мы рассмотрели только одномерные (1-d ) волны, то есть волны, распространяющиесяв струне, в линейной среде. Не менее знакомы нам двумерные волны в форме длинных горных хребтов и впадин на двумерной поверхности воды. Следующий шаг при обсуждении волн нам предстоит сделать в пространство двух (2-d ) и трех (3-d ) измерений. Опять-таки никакие новые физические принципы не будут использоваться; задача состоит просто в описании волновых процессов.

Мы начнем обсуждение, вернувшись к той простой ситуации, с которой начиналась эта глава - одиночный волновой импульс . Однако теперь это будет не возмущение на струне, а всплеск на поверхности водоема. Всплеск оседает под своим собственным весом, а смежные с ним области, испытывая повышенное давление, подымаются , начиная распространение волны. Этот процесс “в разрезе” изображен на рис. 7-7(a) . Дальнейшая логика рассмотрения ситуации точно такая же, что уже была использована при изучении эффектов, возникающих после резкого удара по центральной части струны. Но на сей раз волна может перемещаться во всех направлениях. Не имея причин предпочесть одно какое-то направление другому, волна распространяется во всехнаправлениях. Результат - знакомый всем расширяющийся круг ряби на поверхности тихого водоема, см. рис. 7-7 (b) .

Хорошо знакомы нам и плоские волны на поверхности воды - те волны, гребни которых образуют длинные, иногда практически параллельные, линии на поверхности воды. Это те самые волны, которые периодически накатывают на берег. Интересной особенностью волн такого типа является тот способ, которым они преодолевают препятст-вия - например, дыры в непрерывной стене волнолома . Рисунок 7-8 иллюстрирует этот процесс. Если размер отверстия сравним с длиной волны, то каждая последовательная волна создает в пределах отверстия всплеск, который, как и на рис. 7-7, служит источником круглой ряби в акватории порта. В результате между волнорезом и берегом возникают концентрические , “кольцевые ” волны.

Это явление известно как дифракция волн. Если же ширина дыры в волноломе будет намного больше, чем длина волны, то этого не случится - прошедшие через препятствие волны сохранят свою плоскую форму, разве что на краях волны возникнут слабые искажения

Подобно волнам на поверхности воды, существуют и трехмерные волны (3-d –волны). Здесь самый знакомый пример - это звуковые волны. Гребень звуковой волны - это область сгущения молекул воздуха. Рисунок, аналогичный рис. 7-7 для трехмерного случая представлял бы расширяющуюся волну в форме сферы.

Все волны обладают свойством преломления . Это эффект, который возникает когда волна проходит через границу двух сред, и попадает в среду, в которой она движется более медленно. Особенно наглядно выглядит этот эффект в случае плоских волн (см. рис. 7-9 ). Та часть плоской волны, которая оказалась в новой, “медленной”, среде движется в ней с меньшей скоростью. Но поскольку эта часть волны неизбежно остается связанной с волной в “быстрой” среде, её фронт (пунктирная линия в нижней части рис.7-9) должен изломиться, то есть приблизиться к границе раздела двух сред, как это и показано на рис. 7-9.

Если же изменение скорости распространения волны происходит не скачком, а постепенно, то и поворот фронта волны будет происходить тоже плавно. Это, кстати, объясняет причину того, почему волны прибоя, независимо от того, как они двигались в открытой воде, почти всегда параллельны береговой линии. Дело в том, что с уменьшением толщины водного слоя скорость волн на его поверхности уменьшается , поэтому у берега, где волны попадают в область мелководья, они замедляются. Постепенный поворот их фронта и делает волны практически параллельными береговой линии.

Возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости выводится из равновесного состояния (например, при падении камня). При этом возникают силы, восстанавливающие равновесие: силы поверхностного натяжения и тяжести. В зависимости от природы восстанавливающих сил В. на п. ж. подразделяются на: капиллярные волны, если преобладают силы поверхностного натяжения, и гравитационные, если преобладают силы тяжести. В случае, когда совместно действуют силы тяжести и силы поверхностного натяжения, волны называются гравитационно-капиллярными. Влияние сил поверхностного натяжения наиболее существенно при малых длинах волн, сил тяжести - при больших.

Скорость с распространения В. на п. ж. зависит от длины волны λ. При возрастании длины волны скорость распространения гравитационно-капиллярных волн сначала убывает до некоторого минимального значения

а затем вновь возрастает (σ - поверхностное натяжение, g - ускорение силы тяжести, ρ - плотность жидкости). Значению c 1 соответствует длина волны

При λ > λ 1 скорость распространения зависит преимущественно от сил тяжести, а при λ см.

Причины возникновения гравитационных волн: притяжение жидкости Солнцем и Луной (см. Приливы и отливы), движение тел вблизи или по поверхности воды (корабельные волны), действие на поверхность жидкости системы импульсивных давлений (ветровые волны, начальное отклонение некоторого участка поверхности от равновесного положения, например местное возвышение уровня при подводном взрыве). Наиболее распространены в природе ветровые волны (см. также Волны морские).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Волны на поверхности жидкости" в других словарях:

    Волны, возникающие и распространяющиеся по свободной поверхности жидкости или по поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внеш. воздействия, в результате к рого поверхность жидкости выводится из… … Физическая энциклопедия

    Механика сплошных сред … Википедия

    Вол новые движения границы жидкости (напр., поверхности океана), возникающие при нарушении равновесия жидкости (иод действием ветра, проходящего судна, брошенного камня) и стремления сил тяжести и сил поверхностного натяжения жидкости… … Естествознание. Энциклопедический словарь

    Волны на поверхности моря или океана. Благодаря большой подвижности частицы воды под действием разного рода сил легко выходят из состояния равновесия и совершают колебательные движения. Причинами, вызывающими появление волн, являются… … Большая советская энциклопедия

    Изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Наиболее важные и часто встречающиеся виды В. упругие волны, волны на поверхности жидкости и электромагнитные волны. Частными случаями упругих В.… … Физическая энциклопедия

    Волны - Волны: а одиночная волна; б цуг волн; в бесконечная синусоидальная волна; l длина волны. ВОЛНЫ, изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Основное свойство всех волн, независимо от их… … Иллюстрированный энциклопедический словарь

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, напр., звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Большой Энциклопедический словарь

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

    Волна изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой… … Википедия

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, например звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Энциклопедический словарь

Книги

  • Динамика многофазных систем. Учебное пособие , Глазков Василий Валентинович. Курс "Динамика многофазных систем" является продолжением основного курса тепло- и массообмена. В рамках курса формулируется математическое описание и модели двухфазных систем. Рассматриваются…

Формулы, выведенные выше, пригодны только для волн на глубокой воде. Они ещё достаточно точны, если глубина воды равна половине длины волны. При меньшей глубине частицы воды на поверхности волны описывают не круговые траектории, а эллиптические, и выведенные соотношения неверны и принимают на самом деле более сложный вид. Однако для волн на очень мелкой воде, а также для очень длинных волн на средней воде зависимость между длиной и скоростью распространения волн принимает опять более простой вид. В обоих этих случаях вертикальные перемещения частиц воды на свободной поверхности весьма незначительны по сравнению с горизонтальными перемещениями. Поэтому опять можно считать, что волны имеют приблизительно синусоидальную форму. Так как траектории частиц представляют собой очень сплющенные эллипсы, то влиянием вертикального ускорения на распределение давления можно пренебречь. Тогда на каждой вертикали давление будет изменяться по статическому закону.

Пусть на поверхности воды над плоским дном распространяется со скоростью с справа налево «вал» воды шириной b, повышающий уровень воды от h 1 до h 2 (рисунок 4.4). До прихода вала вода находилась в покое. Скорость её движения после повышения уровня щ. Эта скорость не совпадает со скоростью вала, она необходима для того, чтобы вызвать боковое перемещение объёма воды в переходной зоне шириной b вправо и тем самым поднять уровень воды.

рис 4.4 п

Наклон вала по всей его ширине принимается постоянным и равным. При условии, что скорость щ достаточно мала, чтобы ей можно было пренебречь по сравнению со скоростью с распространения вала, вертикальная скорость воды в области вала будет равна (рисунок 4.5)

Условие неразрывности 3.4, применённое к единичному слою воды (в направлении, перпендикулярном к плоскости рисунка 4.4), имеет вид

щ 1 l 1 = щ 2 l 2 , (интеграл исчез из-за линейности рассматриваемых площадок),

здесь щ 1 и щ 2 - средние скорости в поперечных сечениях l 1 и l 2 потока соответственно. l 1 и l 2 - линейные величины (длины).

Это уравнение, применённое к данному случаю, приводит к соотношению

h 2 щ = bV , или h 2 щ = c (h 2 -h 1). (4.9)

Из 4.9 видно, что связь между скоростями щ и c не зависит от ширины вала.

Уравнение 4.9 остаётся верным и для вала непрямолинейного профиля (при условии малости угла б). Это легко показать, разбивая такой вал на ряд узких валов с прямолинейными профилями и складывая уравнения неразрывности, составленные для каждого отдельного вала:

Откуда при условии, что разностью h 2 - h 1 можно пренебречь и вместо h 2i в каждом случае подставить h 2 , получается. Это условие справедливо при уже принятом допущении о малости скорости щ (смотри 4.9).

К кинематическому соотношению 4.9 следует присоединить динамическое соотношение, выведенное из следующих соображений:

Объём воды шириной b в области вала находится в ускоренном движении, так как частицы, составляющие этот объём, начинают своё движение на правом краю с нулевой скоростью, а на левом краю имеют скорости щ (рисунок 4.4). Из области внутри вала берётся произвольная частица воды. Время, за которое над этой частицей проходит вал, равно

поэтому ускорение частицы

Далее ширина вала (его линейный размер в плоскости, перпендикулярной рисунку) принимается равной единице (рисунок 4.6). Это позволяет записать выражение для массы объёма воды, находящегося в области вала, следующим образом:

Где h m есть средний уровень воды в области вала. (4.11)

Разность давлений по обе стороны вала на одной и той же высоте составляет (по формуле гидростатики) , где постоянная для данного вещества (воды) .

Следовательно, полная сила давления, действующая на рассматриваемый объём воды в горизонтальном направлении, равна. Второй закон Ньютона (основное уравнение динамики) с учётом 4.10 и 4.11 запишется в виде:

Откуда. (4.12)

Таким образом, ширина вала выпала из уравнения. Аналогично тому, как это было сделано для уравнения 4.9, доказывается, что уравнение 4.12 применимо также для вала с другим профилем при условии, что разность h 2 - h 1 мала по сравнению с самими h 2 и h 1 .

Итак, имеется система уравнений 4.9 и 4.12. Далее в левой части уравнения 4.9 h 2 заменяется на h m (что при низком вале и как следствие малой разнице h 2 - h 1 вполне допустимо) и уравнение 4.12 делится на уравнение 4.9:

После сокращений получается

Чередование валов с симметричными углами наклонов (т. н. положительных и отрицательных валоы) приводит к образованию волн. Скорость распространения таких волн не зависит от их формы.

Длинные волны на мелкой воде распространяются со скоростью, называемой критической скоростью.

Если на воде следуют друг за другом несколько низких валов, из которых каждый несколько повышает уровень воды, то скорость каждого последующего вала несколько больше скорости предыдущего вала, так как последний уже вызвал некоторое увеличение глубины h. Кроме того, каждый последующий вал распространяется уже не в неподвижной воде, а в воде, уже движущейся в направлении движения вала со скоростью щ. Всё это приводит к тому, что последующие валы догоняют предыдущие, в результате чего возникает крутой вал конечной высоты.

Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачного примера придумать трудно, ибо они нисколько не похожи ни на звук, ни на свет; здесь собрались все трудности, которые только могут быть в волнах. Давайте начнем с длинных волн на глубокой воде. Если считать океан бесконечно глубоким и на его поверхности происходят какие-то возмущения, то возникнут" волны. Вообще говоря, возможны любые возмущения, но синусоидальное движение с очень небольшим возмущением дает волны, напоминающие обычные гладкие океанские волны, идущие к берегу. Вода, разумеется, в среднем остается на месте, а движутся сами волны. Что ж это за движение — поперечное или продольное? Оно не может быть ни тем, ни другим: ни поперечным, ни продольным. Хотя в каждом данном месте горбы чередуются со впадинами, оно не может быть движением вверх и вниз просто из-за закона сохранения количества воды. Куда должна деваться вода из впадины? Ведь она же практически несжимаема. Скорость волн сжатия, т. е. звука в воде, во много раз больше: мы сейчас их не рассматриваем. Итак, для нас сейчас вода несжимаема, поэтому при образовании впадины вода из этого места может двигаться только в стороны. Так оно и получается на самом деле: частички воды вблизи поверхности будут двигаться приблизительно по окружности. Как-нибудь, когда вы будете нежиться на воде, лежа на круге, и придет такой гладкий вал, посмотрите на соседние предметы и вы увидите, что они движутся по окружностям. Так что картина получается неожиданная: здесь мы имеем дело со смесью продольных и поперечных волн. С увеличением глубины круги уменьшаются, пока на достаточной глубине от них ничего не останется (фиг. 51.9).

Очень интересно определить скорость таких волн. Это должно быть какой-то комбинацией плотности воды, ускорения силы тяжести, которая в данном случае является восстанавливающей силой, и, возможно, длины волны и глубины. Если мы рассмотрим случай бесконечной глубины, то скорость больше не будет зависеть от нее. Но какую бы формулу для фазовой скорости волн мы ни взяли, она должна содержать эти величины в такой комбинации, чтобы давать правильную размерность. Испробовав множество различных способов, мы найдем, что только одна комбинация g и λ может дать нам размерность скорости, именно √(gλ) , которая совсем не включает плотности. На самом деле эта формула для фазовой скорости не вполне точна, и полный анализ динамики, в который мы не будем входить, показывает, что все действительно получится так, как у нас, за исключением √(2 π), т. е.

Интересно, что длинные волны бегут быстрее коротких. Так что когда проходящая вдали моторная лодка создает волны, то после некоторого промежутка времени они достигнут берега, но сначала это будут редкие всплески, поскольку первыми приходят длинные волны. Затем приходящие волны становятся все короче и короче, ибо скорость падает как квадратный корень из длины волны.

«Это же неверно,— может возразить кто-нибудь,— ведь чтобы делать такое утверждение, мы должны смотреть на групповую скорость». Правильно, конечно. Формула для фазовой скорости не говорит нам о том, что приходит первым; об этом может нам сказать только групповая скорость. Так что мы должны получить групповую скорость и мы сможем показать, что она равна половине фазовой скорости. Для этого нужно только вспомнить, что фазовая скорость ведет себя как квадратный корень из длины волны. Так же, т. е. как квадратный корень из длины волны, ведет себя и групповая скорость. Но как может групповая скорость быть вдвое меньше фазовой? Посмотрите на группу волн, вызванных проходящей мимо лодкой, и проследите за каким-то определенным гребнем. Вы обнаружите, что он бежит вместе с группой, но постепенно становится все меньше и меньше, а дойдя до переднего фронта, совсем умирает. Но таинственным и непостижимым образом на смену ему с заднего фронта поднимается слабенькая волна и становится она все сильнее и сильнее. Короче говоря, по группе движутся волны, тогда как сама группа движется вдвое медленнее этих волн.

Поскольку групповая и фазовая скорости не равны друг другу, то волны, вызванные движущимся объектом, будут уже не просто коническими, а гораздо более сложными и интересными. Вы можете видеть это на фиг. 51.10, где показаны волны, вызванные движущейся по воде лодкой. Заметьте, что они совсем не похожи на то, что мы получали для звука (когда скорость не зависит от длины волны), где фронт волны был просто распространяющимся в стороны конусом. Вместо него мы получили волны позади движущегося объекта, фронт которых перпендикулярен его движению, да еще движущиеся под другими углами небольшие волны с боков. Всю эту картину движения волн в целом можно очень красиво воссоздать, зная только, что фазовая скорость пропорциональна квадратному корню из длины волны. Весь фокус заключается в том, что картина волн стационарна относительно лодки (движущейся с постоянной скоростью); все другие виды волн отстанут от нее.

До сих пор мы рассматривали длинные волны, для которых восстанавливающей силой была сила тяжести. Но когда волны становятся очень короткими, то основной восстанавливающей силой оказывается капиллярное притяжение, т. е. энергия поверхностного натяжения. Для волн поверхностного натяжения фазовая скорость равна

где Т — поверхностное натяжение, а ρ — плотность. Здесь все наоборот: чем короче длина волн, тем большей оказывается фазовая скорость. Если же действуют и сила тяжести и капиллярная сила, как это обычно бывает, то мы получаем комбинацию

где k = 2 π/λ — волновое число. Как видите, скорость волн на воде — вещь действительно довольно сложная. На фиг. 51.11 показана фазовая скорость как функция длины волны. Она велика для очень коротких волн, велика для очень длинных волн, но между ними существует некоторая минимальная скорость распространения. Исходя из этой формулы, можно вычислить и групповую скорость: она оказывается равной 3 / 2 фазовой скоро сти для ряби и 1 / 2 фазовой скорости для волн «тяжести». Слева от минимума групповая скорость больше фазовой, а справа групповая скорость меньше. С этим фактом связано несколько интересных явлений. Поскольку групповая скорость с уменьшением длины волны быстро увеличивается, то, если мы создадим какие-то возмущения, возникнут волны соответствующей длины, которые идут с минимальной скоростью, а впереди них с большей скоростью побегут короткие и очень длинные волны. В любом водоеме можно легко увидеть очень короткие волны, а вот длинные волны наблюдать труднее.

Таким образом, мы убедились, что рябь, которая столь часто используется для иллюстрации простых волн, на самом деле гораздо сложнее и интереснее: у нее нет резкого волнового фронта, как в случае простых волн, подобных звуку или свету. Основная волна, которая вырывается вперед, состоит из мелкой ряби. Благодаря дисперсии резкое возмущение поверхности воды не приводит к резкой волне. Первыми все равно идут очень мелкие волны. Во всяком случае, когда по воде с некоторой скоростью движется объект, то возникает очень сложная картина, поскольку разные волны идут с разной скоростью. Взяв корыто с водой, можно легко продемонстрировать, что самыми быстрыми будут мелкие капиллярные волны, а уже за ними идут более крупные. Кроме того, наклонив корыто, можно увидеть, что там, где меньше глубина, меньше и скорость. Если волна идет под каким-то углом к линии максимального наклона, то она заворачивает в сторону этой линии. Таким способом можно продемонстрировать множество различных вещей и прийти к заключению, что волны на воде — куда более сложная вещь, чем волны в воздухе.

Скорость длинных волн с круговым движением воды уменьшается на мелком месте и увеличивается на глубоком. Таким образом, когда волна идет к берегу, где глубина меньше, она замедляется. Но там, где вода глубже, волна движется быстрее, так что мы снова сталкиваемся с механизмом ударной волны. Однако на этот раз, поскольку волна не столь проста, ударный фронт ее гораздо больше искажен: волна «перегибается через себя» самым привычным для нас образом (фиг. 51.12). Именно это мы видим, когда волна набегает на берег: в ней выявляются все присущие природе трудности. Никому до сих пор не удалось вычислить форму волны в тот момент, когда она разбивается. Это очень легко сделать, когда волны малы, но когда они становятся большими, все слишком усложняется.

Интересное свойство капиллярных волн можно наблюдать при возмущении поверхности движущимся объектом. С точки зрения самого объекта вода течет мимо него, и волны, которые в конечном итоге останутся вместе с ним, всегда будут волнами, которые как раз имеют нужную скорость, чтобы оставаться на воде вместе с объектом. Точно так же если поместить объект в поток, который будет омывать его, то картина волн окажется стационарной и как раз нужной длины волны для того, чтобы двигаться с той же скоростью, что и вода. Но если групповая скорость меньше фазовой, то возмущение идет по потоку назад, поскольку групповая скорость недостаточна для того, чтобы догнать поток. Если же групповая скорость больше фазовой, то волновая картина появится перед объектом. Если пристально следить за плывущим в потоке объектом, то можно заметить впереди него небольшую рябь, а позади него — длинные волны.

Другие интересные явления подобного рода можно наблюдать в льющейся жидкости. Если, например, быстро выливать молоко из бутылки, то можно заметить, как струя молока пересекается множеством перекрещивающихся линий. Это волны, вызванные возмущением на краях бутылки; они очень похожи на волны, вызванные объектом, плывущим по потоку. Но теперь такой эффект возникает с обеих сторон, поэтому получается картина пересекающихся линий.

Итак, мы познакомились с некоторыми интересными свойствами волн, с различными усложнениями, зависящими от фазовой скорости и длины волны, а также с зависимостью скорости волны от глубины и т. д.; все это приводит к весьма сложным, а потому и интересным явлениям природы.

Любое локальное нарушение горизонтальности поверхности жидкости приводит к появлению волн, которые распространяются по поверхности и быстро затухают с глубиной. Возникновение волн происходит из-за совместного действия силы тяжести и силы инерции (гравитационные гидродинамические волны) или силы поверхностного натяжения и силы инерции (капиллярные волны).

Приведем ряд результатов по гидродинамике поверхностного волнения жидкости, которые понадобятся нам в дальнейшем . Можно существенно упростить задачу, если считать жидкость идеальной; учет диссипации необходим главным образом для капиллярных и коротких гравитационных волн.

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом что соответствует малости амплитуды волны по сравнению с ее длиной X. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала (напомним, что :

Направлена вертикально вверх и соответствует невозмущенной поверхности жидкости).

Для неограниченной поверхности жидкости, глубина которой значительно больше длины волны, можно искать решение задачи в виде распространяющейся в положительном направлении х и затухающей с глубиной плоской неоднородной волны:

где - частота волны и волновое число, где - фазовая скорость. Подставляя это значение потенциала в уравнение (6.1), а также учитывая, что решения имеют смысл для , получаем выражение для потенциала:

а удовлетворяя граничному условию на поверхности жидкости дисперсионное уравнение

Таким образом, групповая скорость распространения гравитационной волны

тогда как фазовая скорость такой волны

Как видно, гравитационные волны обладают дисперсией; с увеличением длины волны их фазовая скорость растет.

Интересен вопрос о том, каково распределение скоростей частиц жидкости в волне; оно находится дифференцированием потенциала (6.3) по х.

Рис. 1.4. Дисперсионная кривая для гравитационно-капиллярных волн на поверхности глубокой воды в области, где существенны и g, и а.

Рассмотрение показывает, что частицы жидкости в волне описывают движение приблизительно по окружности (вокруг своих равновесных точек ), радиус которых экспоненциально спадает с глубиной. На глубине, равной одной длине волны, ее амплитуда примерно в 535 раз меньше, чем вблизи поверхности. Приведенные результаты относились к волнам на глубокой воде, когда где h - глубина жидкости. Если имеет место противоположный случай (например, волны распространяются в канале конечной, но малой глубины), то

Как видно, такие волны дисперсией не обладают.

С учетом капиллярной силы Лапласа, обусловленной поверхностным натяжением 0,

т. е., в отличие от гравитационных, скорость капиллярных волн растет с уменьшением длины волны. Совместное действие силы тяжести и силы поверхностного натяжения определяется таким дисперсионным уравнением (глубокая вода):

На рис. 1.4 показана зависимость фазовой скорости распространения волн на поверхности жидкости от длины волны для воды согласно выражению (6.9). Из этого рисунка видно, что при см имеет место минимум скорости поверхностных волн, являющихся смешанными гравитационно-капиллярными волнами..

Приведенные результаты относились к одномерным линейным волнам в отсутствие диссипации. Кроме того, считалось, что волны регулярные и распространяются в одном направлении. Волны, возникающие при движении корабля в спокойной воде или при подходе к мелкому берегу, действительно представляют собой

регулярные возмущения. Волны же на поверхности жидкости, возникающие под действием ветра, преимущественно случайные - они движутся в разных направлениях и имеют разные частоты и амплитуды; именно такую картину мы наблюдаем, находясь на корабле в открытом море в ветренную погоду.

Затухание гравитационных волн с длинами волн более метра мало, но оно все же значительно больше, чем это следует из линейной теории. Это расхождение, очевидно, вызвано процессами, связанными с нелинейностью при распространении гравитационных и капиллярных волн. Так, если одиночная волна распространяется на мелкой воде с фазовой скоростью , то такая волна не обладает дисперсией. Ее профиль по мере распространения становится круче благодаря тому, что верхние частицы среды, для которых глубина h больше, чем для нижних частиц, будут двигаться с большей скоростью, согласно (6.7), и волна начнет захлестываться; при подходе к берегу волна обрушивается на него. Эффект захлестывания усиливается еще и потому, что при уменьшении глубины h возрастает амплитуда волны по закону сохранения лотока энергии плотность энергии возрастает из-за уменьшения поперечного сечения слоя воды. С ростом же нелинейные эффекты проявляются еще сильнее. Процесс «укручения» волн при их распространении происходит и на глубокой воде вследствие нелинейности уравнений движения. Теория нелинейных волн на ловерхности жидкости получила большое развитие в последнее время, хотя первые работы в этом направлении были сделаны еще в конце прошлого века.

Если имеется несколько волн, они нелинейно взаимодействуют друг с другом; принцип суперпозиции для волн конечной амплитуды уже не соблюдается. Условия нелинейного взаимодействия гравитационных волн, благодаря их дисперсионным свойствам, отличаются интересными особенностями, на которых мы здесь не имеем возможности остановиться. Отметим лишь, что реально существующее взаимодействие случайных волн конечной амплитуды в принципе объясняет значительно большее затухание волн на поверхности, чем это предсказывает линейная теория. Действует механизм поглощения за счет нелинейного взаимодействия; энергия из области малых волновых чисел (длинные волны) перекачивается в области все меньших длин волн и, наконец, - в капиллярную область спектра, где она в конечном счете диссипируется за счет вязкости, переходя в тепло .

В гл. 3 мы будем иметь дело с нелинейными звуковыми волнами и еще вернемся к вопросам взаимодействия волн на поверхности жидкости.