Меню
Бесплатно
Главная  /  Слизь в носу  /  Выделение звука. Основы звукохимии (химические реакции в звуковых полях) Химические реакции протекающие со звуком примеры

Выделение звука. Основы звукохимии (химические реакции в звуковых полях) Химические реакции протекающие со звуком примеры

Звукохимия

Звукохимия (сонохимия) - раздел химии, который изучает взаимодействие мощных акустических волн и возникающие при этом химические и физико-химические эффекты. Звукохимия исследует кинетику и механизм звукохимических реакций, происходящих в объёме звукового поля. К области звукохимии так же относятся некоторые физико-химические процессы в звуковом поле: сонолюминесценция , диспергирование вещества при действии звука, эмульгирование и другие коллоидно-химические процессы.

Основное внимание сонохимия уделяет исследованию химических реакций, возникающих под действием акустических колебаний - звукохимическим реакциям.

Как правило, звукохимические процессы исследуют в ультразвуковом диапазоне (от 20 кГц до нескольких МГц). Звуковые колебания в килогерцовом диапазоне и инфразвуковой диапазон изучаются значительно реже.

Звукохимия исследует процессы кавитации .

История звукохимии

Впервые влияние звуковых волн на протекание химических процессов было открыто в 1927 г. Ричардом и Лумисом, обнаружившими, что под действием ультразвука происходит разложение иодида калия в водном растворе с выделением иода . В дальнейшем были открыты следующие звукохимические реакции:

  • диспропорционирование азота в воде на аммиак и азотистую кислоту
  • разложение макромолекул крахмала и желатина на меньшие молекулы
  • цепная стереоизомеризация малеиновой кислоты в фумаровую
  • образование радикалов при взаимодействии воды и четырёххлористого углерода
  • димеризация и олигомеризация кремнеорганических и оловоорганических соединений

Классификация звукохимических реакций

В зависимости от механизма первичных и вторичных элементарных процессов, звукохимические реакции можно условно разделить на следующие классы:

  1. Окислительно-восстановительные реакции в воде, протекающие в жидкой фазе между растворенными веществами и продуктами ультразвукового расщепления молекул воды, возникающими в кавитационном пузырьке и переходящими в раствор (механизм действия ультразвука является косвенным, и во многом он аналогичен радиолизу водных систем).
  2. Реакции внутри пузырька между растворенными газами и веществами с высокой упругостью пара (например, синтез окислов азота при воздействии ультразвука на воду, в которой растворен воздух). Механизм этих реакций во многом аналогичен радиолизу в газовой фазе.
  3. Цепные реакции в растворе, инициирующиеся не радикальными продуктами расщепления воды, а другим веществом, расщепляющимся в кавитационном пузырьке (например, реакция изомеризации малеиновой кислоты в фумаровую, инициируемая бромом или алкилбромидами).
  4. Реакции с участием макромолекул (например, деструкция полимерных молекул и инициированная ею полимеризация).
  5. Инициирование ультразвуком взрыва в жидких или твердых взрывчатых веществах (например, в нитриде иода, тетранитрометане, тринитротолуоле).
  6. Звукохимические реакции в неводных системах. Некоторые из этих реакций: пиролиз и окисление насыщенных углеводородов, окисление алифатических альдегидов и спиртов, Расщепление и димеризация алкилгалогенидов, реакции галоидопроизводных с металлами (реакция Вюрца), алкилирование ароматических соединений, получение тиоамидов и тиокарбаматов, синтез металлоорганических соединений, реакция Ульмана, реакции циклоприсоединения, реакции обмена галоида, получение и реакции перфторалкильных соединений, карбеновые синтезы, синтез нитрилов и др.

Методы звукохимии

Для изучения звукохимических реакций применяют следующие методы:

  • Обратный пьезоэлектрический эффект и эффект магнитострикции для генерирования высокочастотных звуковых колебаний в жидкости
  • Аналитическая химия для исследования продуктов звукохимических реакций

Литература

  • Маргулис М.А. Основы звукохимии. Химические реакции в акустических полях. - М .: Высшая школе, 1984. - 272 с. - 300 экз.

Wikimedia Foundation . 2010 .

Смотреть что такое "Звукохимия" в других словарях:

    Сущ., кол во синонимов: 2 сонохимия (3) химия (43) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - «Введение в истинную физическую химию». Рукопись М. В. Ломоносова. 1752 Физическая химия раздел химии … Википедия

    У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия

Сонохимия – это применение ультразвука в химических реакциях и процессах. Механизмом, вызывающим звукохимические эффекты в жидкостях, служит явление акустической кавитации.

Ультразвуковая лаборатория и промышленные устройства компании Hielscher используются в широком диапазоне звукохимических процессов.

Звукохимические реакции

Следующие звукохимические эффекты можно наблюдать в химических реакциях и процессах:

  • Увеличение скорости реакции
  • Увеличение выхода реакции
  • Более эффективное использование энергии
  • Звукохимические методы для перехода от одной реакции к другой
  • Улучшение катализатора межфазного переноса
  • Исключение катализатора межфазного переноса
  • Использование неочищенных или технических реагентов
  • Активация металлов и твёрдых веществ
  • Увеличение реакционной способности реагентов или катализаторов ()
  • Улучшение синтеза частиц
  • Покрытие наночастиц

Ультразвуковая кавитация в жидкостях

Кавитация означает «образование, рост и взрывное разрушение пузырьков в жидкости. Кавитационный взрыв производит интенсивный местный нагрев (~5000 K), высокое давление (~1000 атм.), и огромные скорости нагрева/охлаждения (>109 K/сек.) и потоков жидких струй (~400 км/час)»

Кавитационные пузырьки – это пузырьки вакуума. Вакуум создаётся быстро движущейся поверхностью на одной стороне и инертной жидкостью на другой. Получающийся перепад давления служит для преодоления сил сцепления и в жидкости. Кавитация может быть получена различными путями, например, соплами Вентури, соплами высокого давления, высокоскоростным вращением или ультразвуковыми датчиками. Во всех этих системах поступающая энергия преобразуется в трение, турбулентности, волны и кавитацию. Часть поступающей энергии, которая трансформируется в кавитацию, зависит от нескольких факторов, характеризующих движение оборудования, генерирующего кавитацию в жидкости.

Интенсивность ускорения является одним из наиболее важных факторов, влияющих на эффективность трансформации энергии в кавитацию. Более высокое ускорение создаёт больший перепад давления, что, в свою очередь, увеличивает вероятность создания пузырьков вакуума вместо образования волн, распространяющихся через жидкость. Таким образом, чем больше ускорение, тем больше доля энергии, которая преобразуется в кавитацию. В случае с ультразвуковыми датчиками интенсивность ускорения характеризуется амплитудой колебаний. Более высокие амплитуды приводят к более эффективному созданию кавитации. Промышленные устройства компании Hielscher Ultrasonics могут создавать амплитуды до 115 мкм. Эти высокие амплитуды учитывают высокое передаточное отношение мощности, что, в свою очередь, позволяет создавать высокие энергетические плотности до 100 Вт/см³.

В дополнение к интенсивности жидкость должна ускоряться так, чтобы создавать минимальные потери в пересчёте на турбулентность, трение и образование волн. Для этого оптимальным путём будет одностороннее направление движения. Ультразвук используется, благодаря его следующим действиям:

  • подготовка активированных металлов путём восстановления солей металлов
  • генерирование активированных металлов обработкой ультразвуком
  • звукохимический синтез частиц осаждением окисей металлов (Fe, Cr, Mn, Co) например, для применения в качестве катализаторов
  • пропитка металлов или галогенидов металлов на подложках
  • приготовление растворов активированных металлов
  • реакции, задействующие металлы через местное образование органических веществ
  • реакции, задействующие неметаллические твёрдые вещества
  • кристаллизация и осаждение металлов, сплавов, цеолитов и прочих твёрдых веществ
  • изменение поверхностной морфологии и размера частиц в результате высокоскоростных столкновений частиц между собой
    • образование аморфных наноструктурных материалов, включая переходные металлы с высокой площадью поверхности, сплавы, карбиды, оксиды и коллоиды
    • укрупнение кристаллов
    • выравнивание и удаление покрытий из пассивирующих оксидов
    • микроманипулирование (разделение на фракции) мелких частиц
  • приготовление коллоидов (Ag, Au, Q-размерных CdS)
  • включение гостевых молекул в твёрдые вещества с неорганической прослойкой
  • сонохимия полимеров
    • деградация и модифицирование полимеров
    • синтез полимеров
  • сонолизис органических загрязняющих веществ в воде

Звукохимическое оборудование

Большинство упомянутых звукохимических процессов может быть подогнано под прямоточную работу. Мы будем рады помочь вам в выборе звукохимического оборудования для ваших нужд. Для исследований и проведения испытаний процессов мы рекомендуем применять наши лабораторные приборы или устройство

Газообразный метан легче воздуха, поэтому образованная им пена легко поднимается под потолок. Ну, а яркое горение основного компонента природного газа удивлять никого не должно - то же самое можно сказать про любой лёгкий углеводород.

Источник: Наука в гифках

2. Реакция окисления люминола и гексацианоферрата(III) калия

Перед вами пример хемилюминесценции: в ходе превращения люминола наблюдается хорошо различимое человеческим глазом свечение. Красная кровяная соль выступает здесь в качестве катализатора - ту же роль, между прочим, может играть и гемоглобин, в результате чего описываемая реакция широко применяется в криминологии для обнаружения следов крови.

Источник: Научное шоу профессора Николя

3. Воздушный шарик, наполненный ртутью(реакция при ударе об пол)

Ртуть - единственный металл, остающийся жидким в нормальных условиях, что позволяет залить его в воздушный шарик. Однако ртуть настолько тяжела, что даже падение шарика с небольшой высоты разорвёт его в клочья.

Источник: Давно не дети

4. Разложение перекиси водорода, катализируемой йодидом калия

В отсутствие примесей водный раствор пероксида водорода вполне стабилен, но стоит внести в него йодид калия, как моментально начнётся разложение этих молекул. Оно сопровождается выделением молекулярного кислорода, прекрасно способствующего образованию различных пен.

Источник: Fishki.net

5. Железо + сульфат меди

Одна из первых реакций, изучаемых в российском курсе химии: в результате замещения более активный металл(железо) растворяется и переходит в раствор, в то время как менее активный металл(медь) осаждается в виде цветных хлопьев. Как несложно догадаться, анимация сильно ускорена во времени.

Источник: Trinixy

6. Перекись водорода и йодистый калий

Ещё один пример реакции разложения пероксида водорода(он же перекись) в присутствие катализатора. Обратите внимание на стоящую на столе бутылку моющего средства: именно она помогает появиться падающей на стол мыльной сосиске.

Источник: Trinixy

7. Горение лития

Литий - один из щелочных металлов, по праву считающихся наиболее активными среди всех прочих металлов. Он горит не столь интенсивно, как его собратья натрий и калий, но нетрудно убедиться, что этот процесс всё равно весьма быстрый.

Источник: Trinixy

8. Обезвоживание сахара в серной кислоте

Очень простая и очень эффектная реакция: серная кислота отнимает воду у молекул сахарозы, превращая их в атомарный углерод(попросту в уголь). Выделяющаяся при этом газообразная вода вспенивает уголь, благодаря чему мы видим угрожающий чёрный столб.

Источник: Fishki.net

9. Кварцевое стекло

В отличие от стандартного оконного стекла, кварц более устойчив к высоким температурам: он не будет« течь» на обычной газовой горелке. Именно поэтому кварцевые трубки спаивают на кислородных горелках, обеспечивающих более высокую температуру пламени.

Источник: Global Research

10. Флуоресцеин

В водном растворе под действием ультрафиолетового излучения зелёный краситель флуоресцеин испускает свет в видимом диапазоне - это явление называется флуоресценцией.

Источник: Thoisoi

11. Молния в цилиндре

Реакция между сульфидом углерода и оксидом азота(I) не только сопровождается ярчайшей белой вспышкой, напоминающей шаровую молнию, но и характеризуется смешным звуком, благодаря которому она и получила своё популярное название - «лающая собака».что иногда это вещество пытаются выдать за драгоценный металл.

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1

Конечный итог реакций взрывного превращения выражают обычно уравнением, связывающим химическую формулу исходного ВВ или состав его (в случае взрывчатой смеси) с составом конечных продуктов взрыва.

Знание уравнения химического превращения при взрыве существенно в двух отношениях. С одной стороны, по этому уравнению можно рассчитать теплоту и объем газообразных продуктов взрыва, а следовательно, и температуру, давление и другие его параметры. С другой стороны, состав продуктов взрыва получает особое значение, если речь идет о ВВ, предназначенных для взрывных работ в подземных выработках (отсюда – расчет рудничной вентиляции, чтобы количество окиси углерода и окислов азота не превосходило определенного объема).

Однако при взрыве не всегда устанавливается химическое равновесие. В тех многочисленных случаях, когда расчет не позволяет надежно установить итоговое равновесие взрывного превращения, – обращаются к эксперименту. Но экспериментальное определение состава продуктов в момент взрыва также встречает серьезные трудности, так как в продуктах взрыва при высокой температуре могут содержаться атомы и свободные радикалы (активные частицы), обнаружить которые после охлаждения не удается.

Органические ВВ, как правило, состоят из углерода, водорода, кислорода и азота. Следовательно, в продуктах взрыва могут содержаться следующие газообразные и твердые вещества: СО 2 , Н 2 О, N 2 , CO, O 2 , H 2 , CH 4 и другие углеводороды: NH 3 , C 2 N 2 , HCN, NO, N 2 O, C. Если в состав ВВ входят сера или хлор, то в продуктах взрыва могут содержаться соответственно SO 2 , H 2 S, HCl и Cl 2 . В случае содержания в составе ВВ металлов, например, алюминия или некоторых солей (например, нитрата аммония NH 4 NO 3 , нитрата бария Ba(NO 3) 2 ; хлора-тов – хлората бария Ba(ClO 3) 2 , хлората калия КСlO 3 ; перхлоратов – аммония NHClO 4 и др.) в составе продуктов взрыва встречаются оксиды, например Al 2 O 3 , карбонаты, например, карбонат бария ВаСО 3 , карбонат калия К 2 СО 3 , бикарбонаты (КНСО 3), цианиды (KCN), сульфаты (BaSO 4 , K 2 SO 4), сульфиды (NS, K 2 S), сульфиты (K 2 S 2 O 3), хлориды (AlCl 3 , BaCl 2 , KCl) и другие соединения.

Наличие и количество тех или иных продуктов взрыва в первую очередь зависит от кислородного баланса состава ВВ.

Кислородный баланс характеризует соотношение между содержанием во взрывчатом веществе горючих элементов и кислорода .

Вычисляют кислородный баланс обычно как разность между весовым количеством кислорода, содержащегося во ВВ, и количеством кислорода, потребным для полного окисления горючих элементов, входящих в его состав. Расчет ведут на 100 г ВВ, в соответствии, с чем кислородный баланс выражают в процентах. Обеспеченность состава кислородом характеризуется кислородным балансом (КБ) или кислородным коэффициентом a к, которые в относительных величинах выражают избыток или недостаток кислорода для полного окисления горючих элементов до высших оксидов, например, СО 2 и Н 2 О.



Если ВВ содержит как раз столько кислорода, сколько нужно для полного окисления входящих в его состав горючих элементов, то кислородный баланс его равен нулю. Если избыток – КБ положителен, при недостатке кислорода – КБ отрицателен. Сбалансированность ВВ по кислороду соответствует КБ – 0; a к = 1.

Если ВВ содержит углерод, водород, азот и кислород и описывается уравнением С а H b N c O d , то величины кислородного баланса и кислородного коэффициента могут определяться по формулам

(2)

где а, b, c и d – число атомов соответственно С, H, N и О в химической формуле ВВ; 12, 1, 14, 16 – округленные до целого числа атомные массы соответственно углерода, водорода, азота и кислорода; знаменатель дроби в уравнении (1) определяет молекулярную массу ВВ: М = 12а + в + 14с + 16d.

С точки зрения безопасности производства и эксплуатации (хранения, транспортирования, применения) ВВ большинство их рецептур имеют отрицательный кислородный баланс.

По кислородному балансу все ВВ подразделяются на следующие три группы:

I. ВВ с положительным кислородным балансом: углерод окисляется до СО 2 , водород до Н 2 О, азот и избыток кислорода выделяются в элементарном виде.

II. ВВ с отрицательным кислородным балансом, когда кислорода недостаточно для полного окисления компонентов до высших оксидов и углерод частично окисляется до СО (но все ВВ превращаются в газы).

III. ВВ с отрицательным кислородным балансом, но кислорода недостаточно для превращения всех горючих компонентов в газы (в продуктах взрыва имеется элементарный углерод).

4.4.1. Расчет состава продуктов взрывчатого разложения ВВ

с положительным кислородным балансом (I группа ВВ)

При составлении уравнений реакций взрыва ВВ с положительным кислородным балансом руководствуются следующими положениями: углерод окисляется до углекислоты СО 2 , водород до воды Н 2 О, азот и избыток кислорода выделяются в элементарном виде (N 2 , O 2).

Например.

1. Составить уравнение реакции (определить состав продуктов взрыва) взрывчатого разложения индивидуального ВВ.

Нитроглицерин: С 3 Н 5 (ONO 2) 3 , М = 227.

Определяем величину кислородного баланса для нитроглицерина:

КБ > 0, запишем уравнение реакции:

С 3 Н 5 (ONO 2) 3 = 3СО 2 + 2,5Н 2 О + 0,25О 2 + 1,5N 2.

Кроме основной реакции протекают реакции диссоциации:

2СО 2 2СО + О 2 ;

О 2 + N 2 2NO;

2H 2 O 2H 2 + O 2 ;

H 2 O + CO CO 2 + H 2 .

Но так как КБ = 3,5 (намного больше нуля) – рекакции смещены в сторону образования СО 2 , Н 2 О, N 2 , следовательно доля газов СО, Н 2 и NО в продуктах взрывчатого разложения незначительна и ими можно пренебречь.

2. Составить уравнение реакции взрывчатого разложения смесевого ВВ: аммонала, состоящего из 80% аммиачной селитры NH 4 NO 3 (M = 80), 15% тротила C 7 H 5 N 3 O 6 (М = 227) и 5% алюминия Al(а.м. М = 27).

Расчет кислородного баланса и коэффициента α к смесевых ВВ ведут следующим образом: вычисляют количество каждого из химических элементов, содержащихся в 1 кг смеси и выражают его в молях. Затем составляют условную химическую формулу для 1 кг, смесевого ВВ, аналогичную по виду химической формуле для индивидуального ВВ и далее ведут расчет аналогично выше приведенному примеру.

Если в смесевом ВВ содержится алюминий, то уравнения для определения величин КБ и α к имеют следующий вид:

,

,

где е – число атомов алюминия в условной формуле.

Решение.

1. Рассчитываем элементарный состав 1 кг аммонала и записываем его условную химическую формулу

%.

2. Записываем уравнение реакции разложения аммонала:

С 4,6 Н 43,3 N 20 O 34 Al 1,85 = 4,6CO 2 + 21,65H 2 O + 0,925Al 2 O 3 + 10N 2 + 0,2O 2 .

4.4.2. Расчет состава продуктов взрывчатого разложения ВВ

с отрицательным кислородным балансом (II группа ВВ)

Как было отмечено ранее при составлении уравнений реакций взрывчатого разложения ВВ второй группы необходимо учитывать следующие особенности: водород окисляется до Н 2 О, углерод окисляется до СО, оставшийся кислород окисляет часть СО до СО 2 и азот выделяется в виде N 2 .

Пример: Составить уравнение реакции взрывчатого разложения пентаэритриттетранитрата (тэна) С(СН 2 ОNO 2) 4 Мтэна = 316. Кислородный баланс рав-ный –10,1%.

Из химической формулы тэна видно, что кислорода до полного окисления водорода и углерода недостаточно (для 8 водородов необходимо 4 ат. кислорода, чтобы превратить в Н 2 О = 4Н 2 О) (для 5 ат. углерода необходимо 10 ат. кислорода, чтобы превратить в СО 2 = 5СО 2) итого требуется 4 + 10 = 14 ат. кислорода, а их всего 12 атомов.

1. Составляем уравнение реакции разложения тэна:

С(СН 2 ОNO 2) 4 = 5CO + 4H 2 O + 1,5O 2 + 2N 2 = 4H 2 O + 2CO + 3CO 2 + 2N 2 .

Для определения величины коэффициентов СО и СО 2:

5СО + 1,5О 2 = хСО + уСО 2 ,

х + у = n – сумма атомов углерода,

х + 2у = m – сумма атомов кислорода,

Х + у = 5 х = 5 – у

х + 2у = 8 или х = 8 – 2у

или 5 – у = 8 – 2у; у = 8 – 5 = 3; х = 5 – 3 = 2.

Т.о. коэффициент при СО х = 2; при СО 2 у = 3, т.е.

5СО + 1,5 О 2 = 2СО + 3СО 2 .

Вторичные реакции (диссоциации):

Водяного пара: Н 2 О + СО СО 2 + Н 2 ;

2Н 2 О 2Н 2 + О 2 ;

Диссоциация: 2СО 2 2СО + О 2 ;

2. Для оценки погрешности рассчитаем состав продуктов реакции взрывчатого разложения с учетом наиболее существенной из вторичных реакций – реакции водяного пара (Н 2 О + СО СО 2 + Н 2).

Уравнение реакции взрывчатого разложения тэна представим в виде:

С(СН 2 ОNO 2) 4 = uH 2 O + xCO + yCO 2 + zH 2 + 2N 2 .

Температура взрывчатого разлива тэна примерно 4000 0 К.

Соответственно константа равновесия водяного пара :

.

Записываем и решаем систему уравнений:

,

х + у = 5 (см. выше) – число атомов углерода;

2z + 2у = 8 – число атомов водорода;

х + 2у + u = 12 – число атомов кислорода.

Преобразование системы уравнений сводится к получению квадратного уравнения:

7,15у 2 – 12,45у – 35 = 0.

(Уравнение типа ау 2 + ву + с = 0).

Решение его имеет вид:

,

,

у = 3,248, тогда х = 1,752; z = 0,242; u = 3,758.

Таким образом, уравнение реакции принимает вид:

C(CH 2 ONO 2) 4 = 1,752CO + 3,248CO 2 + 3,758H 2 O + 0,242H 2 + 2N 2 .

Из полученного уравнения видно, что погрешность в определении состава и количества продуктов взрывчатого разложения приближенным способом незначительна.

4.4.3. Составление уравнений реакций взрывчатого разложения ВВ

с отрицательным КБ (III группа)

При написании уравнений реакции взрывчатого разложения для третьей группы ВВ необходимо придерживаться следующей последовательности:

1. определить по химической формуле ВВ его КБ;

2. водород окислить до Н 2 О;

3. углерод окислить остатками кислорода до СО;

4. написать остальные продукты реакции, в частности С, N и т.д.;

5. проверить коэффициенты.

Пример: Составить уравнение реакции взрывчатого разложения тринитротолуола (тротила, тола) C 6 H 2 (NO 2) 3 CH 3 .

Молярная масса М = 227; КБ = –74,0%.

Решение: Из химической формулы видим, что кислорода недостаточно для окисления углерода и водорода: для полного окисления водорода необходимо 2,5 атома кислорода, неполного окисления углерода – 7 атомов (всего 9,5 по сравнению с имеющимися 6-тью атомами). В этом случае уравнение реакции разложения тротила имеет вид:

C 6 H 2 (NO 2) 3 CН 3 = 2,5Н 2 O + 3,5СО + 3,5 С + 1,5N 2 .

Вторичные реакции:

Н 2 О + СО СО 2 + Н 2 ;