Меню
Бесплатно
Главная  /  Профилактика  /  Электроотрицательность металлической связи. Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность металлической связи. Электроотрицательность. Степень окисления и валентность химических элементов

Когда две различные атомы в молекуле связаны друг с другом посредством ковалентной связи, пара электронов, образующая связь не разделяется одинаково оба атомами. Другими словами, общая пара электронов не лежат в середине молекул, но сдвиг в сторону атома, имеющего большее сродство электронов.

Тенденция атома, чтобы привлечь к себе электроны при объединении в соединении называется электроотрицательность (E.N).

Например – В молекуле водорода хлорид пары электронов притягивается больше к хлору. Это происходит потому, что хлор является более электроотрицательным, чем водород,.

  • Значение E.N зависит от потенциала ионизации и электронного сродства атома.
  • Меньший размер атома притягивает электроны больше, чем крупные.
  • Низкий E.N является характеристикой металлов и высокой E.N является характеристикой неметаллов.

Электроотрицательность Таблица Диаграмма

Значение E.N зависит от следующих факторов.

  • Размер атома ()
  • Электронная конфигурация.
  • Ядерный аттракцион.
  • состояние Окисление.
  • Процентная доля сек -character

Как рассчитать Электроотрицательность – Найти электроотрицательность

Так как E.N элементов является относительным свойством, он не имеет единиц. Электроотрицательность может быть выражено на следующих трех шкал. Были многие ученые, которые объясняют E.N с различным масштабом для сравнения. Из этого Полинг, Весы является наиболее часто используемым.

Mulliken Scale

В этом масштабе Малликена, E.N берется как среднее значение энергии ионизации и электронного сродства.

Отношения между Полинг и Малликеном E.N масштаб, как:

Allred-Рохов Scale

Аллед и Рохи определяются E.N как электростатическая сила оказываемое на ядре валентных электронов. таким образом,

где Z представляет собой эффективный ядерный заряд и г-радиус ковалентного атома в к .

Полинг Scale

Он основан на энергии избыточных связей. Он определил E.N разницы между двумя атомами, а затем путем присвоения произвольных значений нескольких элементов (например. 4.00 фтору, 2.5 к углероду и 2.1 водороду). Он вычислил E.N других элементов.

Электроотрицательность Периодическая таблица

E.N элементов является обратно пропорциональный к радиусу атома. Атомный радиус будет увеличиваться до группы и уменьшается вдоль периода. Это означает, что поведение E.N будет находиться напротив атомный радиус.


электроотрицательность Примеры

Когда связь образуется между атомами двух или более различных элементов. Тип облигации (является ли он ионной или ковалентной или любой тип связи) в основном зависит от концепции E.N .

Электроотрицательность кислорода

  • Полинг шкала помогает измерить E.N Значение кислорода.
  • Кислород имеет значение 3.44
  • Его значение выше, чем Бром, но меньше, чем Фтор.
  • Порядок E.N некоторых элементов F>O >Cl = N>бром>С>я>ЧАС.

Электроотрицательность углерода

  • Существует разница в ноль, когда E.N существует связь между углеродными связями.
  • Его электроотрицательное значение 2.55.
  • Это показываетстоимостьменьше, чем азот(3.0) но больше, чем Бороны (2.0) и кремния (1.8).
  • Это вызывает тенденцию к образованию миллионов соединения с водородом.

Электроотрицательность водорода


В сложных соединениях, состоящих из атомов разных элементов, электронная плотность всегда будет смещена к одному, самому «сильному» соседу. Например, в молекуле воды (Н 2 О) победителем будет кислород, а в соляной кислоте (HCl) поединок выиграет атом хлора. Как же научиться определять эту силу? Для этого достаточно разобрать, что такое электроотрицательность. Приступим.

Атомы и элементы

Первое, что требуется освоить, это разница между атомом и элементом. Допустим, в молекуле HNO 3 целых пять атомов и только три элемента, коими являются водород (Н), азот (N) и кислород (О). Если название какого-то значка или символа стерлось из памяти, то на помощь придет периодическая система Менделеева.

В ней как раз и перечислены все существующие на сегодняшний день элементы. Итак, первая трудность преодолена. Подойдем поближе к вопросу, что такое электроотрицательность.

Шкала Полинга

В школах и вузах для выявления того самого наиболее сильного атома, который оттянет на себя электронную плотность более слабых «соседей», будет достаточно шкалы Полинга. Пугаться не стоит. Здесь всё предельно просто. Относительная электроотрицательность химических элементов расставлена в порядке возрастания и варьируется в интервале 0,7-4,0. Логика тут ясна: у кого данная величина больше, тот и сильнее.

Значение «0,7» принадлежит самому активному металлу - францию. Здесь он проигрывает абсолютно всем, то есть он наименее электроотрицателен (наиболее электроположителен). Максимальным значением, равным четырем, может похвастаться фтор. А потому ему нет равных по силе.

Даже особо не разбираясь, что такое электроотрицательность, в любом сложном фторсодержащем соединении можно сразу определить победителя. Кто оттянет на себя электронную плотность во фториде лития (LiF)? Конечно, фтор. Какой элемент более электроотрицателен в молекуле тетрафторида кремния (SiF 4)? Конечно же, снова фтор.

Закрепляем пройденное

Итак, разобрав, что такое электроотрицательность, подкрепим теорию примерами. Научимся выявлять самый сильный элемент из присутствующих в соединении. Возьмем молекулу серной кислоты (H 2 SO 4). Воспользовавшись шкалой Полинга, определим относительные электроотрицательности всех трех требуемых элементов. У водорода она составит 2,1. Значение для серы несколько выше - 2,6. Но явным лидером будет кислород, имеющий максимальный показатель, равный 3,5. Значит, наиболее электроотрицательным элементом в молекуле H 2 SO 4 будет именно кислород. Таким образом, возможно определить значение электроотрицательности любого элемента.

Классификация химических связей

Глава 3. Химическая связь

Вопросы для самопроверки

1. Что такое преобразование суждения?

2. Чем отличается обращение суждения от превращения суждения?

3. Каким принципам подчиняется истинность (ложность) суждения?

4. Какую функцию выполняет таблица истинности (ложности) суждения?

Упражнения

Преобразуйте суждения, используя правила превращения, обращения и противопоставление предикату.

1) Некоторые студенты неуспевающие. 2) Все лесные делянки зачищены. 3) Ни одна буровая не простаивала в этом году. 4) Среди студентов есть спортсмены. 5) Трудности его не страшат.

Пример: Все металлы – электропроводны. Ни один металл не является неэлектропроводным; (превращение).

Все студенты – учащиеся. Некоторые учащиеся – студенты; (обращение).

Все студенты – учащиеся. Некоторые учащиеся – не являются студентами; (противопоставление предикату).

Одним из наиболее важных вопросов химии является вопрос химической связи, требующий объяснения причин и выявления закономерностей образования связей между атомами, ионами, молекулами на основе теории строения атома и периодического закона Д.И.Менделеева, а также характеристики этих связей посредством интерпретации физических и химических свойств веществ. В настоящее время для изучения химической связи в основном используют два метода:
1) валентных связей;
2) молекулярных орбиталей.
В рамках первого метода рассматривают индивидуальные атомы, вступающие во взаимодействие, исходя из принципа завершенности электронной оболочки (правило октета). Ковалентная связь с точки зрения метода валентных связей образуется за счет обобществления электронной пары.
Простой метод валентных связей для химика наиболее понятен, удобен и нагляден, лучше всего отвечает целям первичного обучения. Недостаток метода валентных связей состоит в том, что в его рамках нельзя объяснить некоторые экспериментальные данные.
Большей эффективностью обладает метод молекулярных орбиталей, в котором рассматриваются электроны, находящиеся в поле притяжения, созданном всеми атомными ядрами молекулы. С точки зрения метода молекулярных орбиталей в молекуле нет атомов как таковых, а есть взаимно отталкивающиеся ядра и взаимодействующие с ними и между собой электроны. Метод молекулярных орбиталей позволяет полнее объяснить экспериментальные данные.
При характеристике химической связи обычно пользуются такими понятиями, как «валентность», «степень окисления» и «кратность связи».
Валентность – способность атома химического элемента к образованию связи с другими атомами. За величину валентности принимают для ионных соединений количество отданных или принятых электронов. Для ковалентных соединений валентность равна числу обобществленных электронных пар.
Степень окисления – это условный заряд, который был бы на атоме в том случае, когда все полярные ковалентные связи были бы ионными.
Кратность связи между данными атомами равна числу их обобществленных электронных пар.
Все связи, рассматриваемые в химии, можно разделить на связи, приводящие к образованию новых веществ, и межмолекулярные связи .
Связи, приводящие к образованию новых веществ, возникают в результате спаривания электронов. Спаренные электроны находятся в поле притяжения всех ядер молекул. Такое перераспределение электронной плотности дает выигрыш в энергии в сравнении с несвязанными атомами. Именно наличием этого выигрыша и обусловлено образование химической связи. В зависимости от способа перераспределения электронов выделяют связи ковалентные, ионные и металлические . По наличию или отсутствию поляризации ковалентные связи делят на полярные – между атомами разных элементов – и неполярные – между атомами одного элемента. По способу образования ковалентные связи разделяют на обычные , донорно-акцепторные и дативные .



Характеристику связи между атомами можно давать на основе электроотрицательности.
Электроотрицательность – способность атома, связанного с другим атомом, притягивать к себе электронное облако, вызывая тем самым поляризацию связи. Используют различные количественные оценки электроотрицательности атома, например полусумму его сродства к электрону и потенциала ионизации (метод Малликена) (табл. 3.1).

Таблица 3.1

Относительные электроотрицательности атомов в виде
полусуммы сродства к электрону и потенциала ионизации

Период Группы элементов
I II III IV V VI VII VIII
Н 2,1 He
Li 0,97 Be 1,47 B 2,01 C 2,50 N 3,07 O 3,50 F 4,10 Ne
Na 1,01 Mg 1,23 Al 1,47 Si 1,47 P 2,1 S 2,6 Cl 2,83 Ar
K 0,91 Ca 1,04 Sc 1,20 Ti 1,32 V 1,45 Cr 1,56 Mn 1,60 Fe 1,64 Co 1,70 Ni 1,75
Cu 1,75 Rb 0,89 Zn 1,66 Sr 0,99 Ga 1,82 Ge 2,02 As 2,20 Se 2,48 Br 2,74 Kr

Существуют и другие подходы к определению электроотрицательности. Так, первой и наиболее известной является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0 (табл. 3.2).

Таблица 3.2

Электроотрицательности атомов
в стабильных степенях окисления по Полингу

Период Группы элементов
I II III IV V VI VII VIII
Н 2,1 He
Li 1,0 Be 1,5 B 2,0 C 2,5 N 3,0 O 3,5 F 4,0 Ne
Na 0,9 Mg 1,2 Al 1,5 Si 1,8 P 2,1 S 2,5 Cl 3,0 Ar
K 0,8 Ca 1,0 Sc 1,3 Ti 1,5 V 1,6 Cr 1,6 Mn 1,5 Fe 1,8 Co 1,8 Ni 1,8
Cu 1,9 Rb 0,8 Zn 1,6 Sr 1,0 Ga 1,6 Ge 1,8 As 2,0 Se 2,4 Br 2,8 Kr

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь. Чем больше разница электроотрицательностей атомов, образующих химическую связь, тем больше степень ионности этой связи. Связи при разности электроотрицательностей атомов больше 2,1 могут считаться чисто ионными (по данным других научных источников, 50%-й ионности связи соответствует разность электроотрицательностей атомов, равная 1,7).
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.
Электроотрицательность атома, по-видимому, зависит и от степени его окисления. Так, для трех оксидов хрома:, , – наблюдается изменение их характера от основного (CrO) через амфотерный (Сr 2 O 3) до кислотного (СrO 3). Один и тот же элемент – хром – в СrO ведет себя как типичный металл, в Сr 2 O 3 – как амфотерный металл, а в СrO 3 – как типичный неметалл.
При составлении химических формул соединений следует учитывать, что более электроотрицательные элементы помещаются правее, например, H 2 S, OF 2 , SCl 2 O, Br 3 N, SiBr 2 F 2 .

Удобной величиной для характеристики способности атома элемента притягивать к себе общие электроны в молекуле яв­ляется электроотрицательность.

Относительной электроотрицательностью СОЭО)

атома элемента называют величину, характеризующую относительную способность атома элемента притяги­вать к себе общие электроны в молекуле.

За единицу 0Э0 принята электроотрицательность атома ли­тия, у фтора этот показатель равен 4,0. Относительно данных ве­личин рассматриваются электроотрицательности остальных элементов (табл. 1.3).

У элементов в пределах периода с увеличением заряда атом­ного ядра наблюдается увеличение ОЭО: наименьшие значения характерны для элементов группы I A, т. е. щелочных метал­лов, а наибольшие - для галогенов, элементов группы VIIA. В соответствии с этим элементы становятся все более слабыми восстановителями и все более сильными окислителями. Самые сильные окислители в периоде - элементы группы VII A.

Внутри группы электроотрицательность элементов уменьша­ется сверху вниз. Чем выше электроотрицательность, тем сильнее выражены у элемента неметаллические свойства и окислитель­ная способность, а при малой электроотрицательности элемент обладает металлическими свойствами и высокой восстановитель­ной способностью. Таким образом, самым сильным окислителем является фтор 9 F (группа VIIA), а самым сильным восстановителем - франций 87 Fr (группа IA). Разность ОЭО соседних ато­мов в соединениях позволяет судить о полярности химической связи между ними (см. разд. 2.1.3).

Периодичность в свойствах элементов, связанная с изменени­ем строения электронных оболочек при возрастании заряда ядра их атомов, наблюдается и для однотипных соединений. В периоде слева направо основные свойства оксидов и гидроксидов групп IA, 2А постепенно сменяются амфотерными и для соединений элементов групп VA-VIIA становятся кислотными. В группах А, кроме VIII, сверху вниз усиливается основный характер ок­сидов и гидроксидов, а их кислотные свойства ослабевают. На­пример: CsOH - более сильное основание, чем LiOH, а кислота НР0 3 значительно слабее, чем HN0 3 . В то же время для вод­ных растворов бинарных соединений неметаллов с водородом типа HF, НСl, НВг, HI или Н 2 0, H 2 S, H 2 Se, Н 2 Те кислотные свойства возрастают от HF к HI, а также от Н 2 0 к Н 2 Те.

Для оксидов и гидроксидов элементов, ОЭО которых нахо­дится в интервале 1,5-2,2, обычно характерны амфотерные свойства, при этом чем меньше значение ОЭО, тем больше про­являются основные свойства их оксидов и гидроксидов. По ме­ре увеличения ОЭО элементов возрастает кислотность их окси­дов и гидроксидов. Для галлия 31 Ga (ОЭО = 1,82) кислотные и основные свойства его оксида Ga 2 0 3 и гидроксида Ga(OH) 3 вы­ражены в одинаковой степени.


Глава 2 ХИМИЧЕСКАЯ СВЯЗЬ

После изучения этой главы вы должны:

- понимать природу и знать характерные свойства ковалентной, ионной и металлической связи;

- знать основные типы молекулярных ореиталей:

- механизмы возникновения ковалентныхсвязей;

- особенности ковалентной связи (краткость, насыщаемость, направленность, сопряжение связей, полярнссть, поляризуемость);

- иметь представление о влиянии, которое оказывает гибриди­зация атомных орбиталей на пространственную структуру молекул и ионов;

- знать, в каких системах имеет место сопряжение связей, что такое ароматические соединения;

- иметь понятие о поляризуемости атомов, молекул и ионов и подразделении их на "жесткие" и "мягкие";

- знать особенности ионной и металлической связи.

В природе элементы в виде изолированных атомов практи­чески не встречаются. Обычно атомы элемента взаимодейству­ют либо друг с другом, либо с атомами других элементов, обра­зуя химические связи с возникновением молекул. В то же вре­мя и молекулы вещества взаимодействуют друг с другом.

Химическая связь - это совокупность сил, связывающих атомы или молекулы друг с другом в новые устойчивые структуры.

Сущность природы химической связи была объяснена лишь после открытия законов квантововолновой механики, управ­ляющих микромиром. Современная теория отвечает на вопросы: почему возникает химическая связь и какова природа сил, обусловливающих ее?

Возникновение химических связей - процесс самопроиз­вольный, в противном случае в природе не существовало бы сложных молекул белков и нуклеиновых кислот. С точки зре­ния термодинамики (разд. 4.3, 4.4) причиной образования хи­мической связи между частицами является уменьшение энер­гии системы. Следовательно, образование химической связи всегда сопровождается выделением энергии, а разрыв химиче­ской связи всегда требует затраты энергии.

Энергия связи - энергия, выделяющаяся в процессе обра­зования связи и характеризующая прочность этой связи (Е св, кДж/моль).

В зависимости от типа соединяемых частиц различают внут­римолекулярные связи, за счет которых образуются молекулы, и межмолекулярные связи, приводящие к образованию ассоциатов из молекул или к связыванию отдельных групп в молекуле биополимера, что обеспечивает ее конформацию (разд. 3.1). Эти виды связей резко отличаются по величине энергии: для внутримолеку­лярных связей энергия составляет 100-1000 кДж/моль, а энергия межмолекулярных связей обычно не превышает 40 кДж/моль. Рассмотрим образование и типы внутримолекулярной химиче­ской связи.

Согласно современным представлениям при сближении атомов между их внешними электронами с противоположными спинами происходит сильное обменное взаимодействие, приводящее к по­явлению общей электронной пары. При этом возрастает элек­тронная плотность в межъядерном пространстве, что способст­вует притяжению ядер взаимодействующих атомов (см. рис. на стр. 31). В результате энергия системы уменьшается и между атомами возникает химическая связь. В зависимости от того, каким образом взаимодействует общая электронная пара с ядра­ми соединяемых атомов, различают три вида химической связи: ковалентную, ионную и металлическую.

Периоды Группы
I II III IV V VI VII
H 2,1
Li 1,0 Be 1,5 B 2,0 C 2,5 N 3,0 O 3,5 F 4,0
Na 0,9 Mg 1,2 Al 1,6 Si 1,8 P 2,1 S 2,5 Cl 3,0
K 0,8 Ca 1,0 Ga 1,6 Ge 1,8 As 2,0 Se 2,4 Br 2,8
Rb 0,8 Sr 1,0 In 1,7 Sn 1,8 Sb 1,9 Te 2,1 I 2,5
Cs 0,7 Ba 0,9 Tl 1,8 Pb 1,6 Bi 1,9 Po 2,0 At 2,2

Примеры решения задач

Пример 1 . Объясните, почему алюминий и скандий находятся в одной группе, но в разных подгруппах?

Р е ш е н и е. 1) Запишем электронные конфигурации атомов и выделим валентные уровни: Al 1s 2 2s 2 2p 6 3s 2 3p 1

Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1

2) Обоснуем расположение элементов Al и Sc в одной группе, но в разных подгруппах. Атомы алюминия и скандия имеют одинаковое число валентных электронов – три. Следовательно, Al и Sc – это элементы одной группы (III). Однако характер заполнения валентного уровня у этих атомов различен. Алюминий – это p – элемент, у него последним заполняется p – подуровень внешнего энергетического уровня, поэтому валентными являются электроны 3s 2 3p 1 . Скандий – это d - элемент, у которого в последнюю очередь заполняется d – подуровень предпоследнего энергетического уровня, поэтому валентные электроны – 4s 2 3d 1 . Именно это является причиной расположения атомов Al и Sc в разных подгруппах: Al (IIIА) – в главной, а Sc (IIIB) – в побочной подгруппе.

Пример 2 . Руководствуясь положением элементов в Периодической системе, определите, какой из атомов – сера или теллур проявляет более сильные неметаллические свойства.

Р е ш е н и е. 1) Определяем координаты этих элементов в Периодической системе: S (3, VIA) и Те (5, VIA), т.е. эти элементы являются электронными аналогами, так как расположены в одной (главной) подгруппе VI группы.

2) Составляем электронные формулы атомов этих элементов и выделяем строение внешних уровней (именно они ответственны за химические свойства любого атома):
S – 1s 2 2s 2 2p 6 3s 2 3p 4 , Те – 1s 2 2s 2 3s 2 Зр 6 3d 10 4s 2 4р 6 4d 10 5s 2 5р 4

Действительно, атомы S и Те имеют сходное строение внешнего уровня, который можно представить в виде ns 2 nр 4 , т.е. на внешнем уровне находится 6 валентных электронов.

3) Сравним неметаллические свойства атомов S и Те . Неметаллические свойства определяются способностью атома присоединять электроны при их химическом взаимодействии. Неметаллические свойства атомов зависят от конфигурации внешнего уровня, радиуса атома (г ат) и величины энергии сродства к электрону (Е е ).

Как уже отмечалось, элементы S и Те расположены в одной группе, имеют сходное строение внешнего уровня - ns 2 nр 4 . Однако атом S имеет три энергетических уровня, а атом Те – пять, поэтому валентные электроны у S расположены ближе к ядру. Радиус атома S меньше, чем радиус атома Те , а энергия сродства к электрону больше, чем Е е атома Te (в главной подгруппе сверху вниз г ат увеличивается, а Е е уменьшается). Поэтому атом S обладает большей способностью присоединять электроны. Следовательно, атом S по сравнению с атомом Те проявляет более сильные неметаллические свойства.

Пример 3 . Руководствуясь Периодической системой, определите какой из элементов – магний или алюминий обладает более выраженными металлическими свойствами.

Р е ш е н и е. 1) Химические свойства элементов определяются электронным строением внешних уровней их атомов. Запишем электронные конфигурации атомов магния и алюминия. Они расположены в третьем периоде (имеют одинаковое число энергетических уровней, равное трем). Магний – элемент второй группы, имеет два валентных ē . Алюминий – элемент третьей группы, имеет три валентных ē . Оба элемента расположены в главных подгруппах, т.е. все валентные электроны находятся на внешнем уровне. Отсюда электронные конфигурации внешних уровней: Mg 2s 2 , Al 3s 2 3p 1 .

2) Сравним металлические свойства атомов этих элементов – способность отдавать электроны при химическом взаимодействии. Металлические свойства зависят от конфигурации внешнего уровня, радиуса атома (r ат ) и энергии ионизации (Е и ). Магний и алюминий находятся в одном периоде. При переходе от Mg к Al происходит увеличение заряда ядра и числа ē на внешнем уровне, которые все сильнее удерживаются ядром атома вследствие уменьшения r ат . При этом Е и возрастает и способность атома к отдаче электронов уменьшается. Следовательно, магний обладает более сильными металлическими свойствами, чем алюминий.

1.3. Химическая связь

Выделяют три типа химической связи: ковалентную, ионную и металлическую.

Ковалентная связь – химическая связь, осуществляемая общими электронными парами. В соответствии с методом валентных связей (ВС) ковалентная связь между двумя атомами осуществляется общей для этих атомов парой электронов с противоположными спинами . В момент образования связи атомные орбитали перекрываются, что приводит к увеличению электронной плотности между ядрами взаимодействующих атомов и к взаимному притяжению ядер к области повышенной электронной плотности. В результате этого происходит выделение энергии и потенциальная энергия системы уменьшается.

Общая для двух атомов электронная пара может образовываться по двум механизмам: обменному или донорно-акцепторному.

При обменном механизме два связываемых атома (А и В) предоставляют для образования связи по одному неспаренному электрону, как бы обмениваясь ими:

А +В→ А В А

Донорно-акцепторный механизм образования связи заключается в том, что один атом А (донор) на образование связи предоставляет пару электронов, а другой атом В (акцептор) – вакантную атомную орбиталь.

Различают две разновидности ковалентной связи: неполярную и полярную.

Ковалентная неполярная связь – это связь, при которой область повышенной электронной плотности расположена симметрично относительно ядер обоих атомов. Такая связь образуется между атомами с одинаковой электроотрицательностью (ЭО ), например, в молекулах Cl 2 , O 2 , H 2 и др.

Ковалентная полярная связь – это связь, при которой область повышенной электронной плотности смещена к ядру атома с большей ЭО . В результате этот атом приобретает эффективный отрицательный заряд, а на другом менее электроотрицательном атоме возникает равный по величине эффективный положительный заряд. Такая система представляет собой электрический диполь. Полярная связь образуется между атомами с разной ЭО , например, в молекулах HCl, HI, H 2 O, H 2 S, CO и др. Чем больше разность электроотрицательностей атомов, образующих связь (∆ЭО А – В ), тем выше полярность связи.

Важнейшие свойства ковалентной связи – насыщаемость и направленность. Насыщаемость – это способность атомов образовывать ограниченное число ковалентных связей. В случае обменного механизма число связей равно числу неспаренных валентных электронов атома. Способность атома к образованию химических связей характеризуется валентностью.

Валентность определяется как число химических связей, которыми данный атом соединен с другими атомами. Она зависит от того, в каком состоянии - основном или возбужденном находится атом. Основное состояние – это устойчивое состояние с наименьшей энергией. При возбуждении спаренные валентные электроны разъединяются и переходят с одного подуровня на свободные АО другого, энергетически более высокого подуровня в пределах внешнего энергетического уровня. В результате число неспаренных электронов увеличивается, и атом данного элемента образует максимально возможное для него число химических связей, проявляя при этом высшую валентность и высшую положительную степень окисления, равную номеру группы в Периодической системе (см. примеры решения задач).

Ковалентная связь имеет направленность , которая обусловливает пространственную структуру молекулы, т.е. ее геометрическую форму. В зависимости от способа перекрывания АО различают σ (сигма)- , π (пи)- и
δ (дельта)- связи.

σ – связь обладает осевой симметрией относительно межъядерной оси, и область перекрывания АО лежит на межъядерной оси. Ее могут образовывать s – АО, p – АО и d – АО. Именно σ – связи определяют пространственную конфигурацию молекул:


π – связь образуется при перекрывании АО, расположенных параллельно друг другу. Область перекрывания лежит по обе стороны от межъядерной оси. В образовании π – связи могут участвовать p – и d – АО:

δ – связи образуют толькоd – АО.

Сигма – связь является самой прочной связью и всегда образуется в первую очередь. Между двумя атомами в молекуле возможна лишь одна σ – связь.

Для объяснения геометрической структуры молекул (или направленности ковалентной связи) используют представление о гибридизации атомных орбиталей центрального атома в молекуле АВ n .

Гибридизация – это выравнивание энергии различных АО у атома А в результате их смешения перед химическим взаимодействием, что приводит к образованию гибридных орбиталей. В гибридизации участвуют только АО одного уровня, например, 2s и 2p . Каждому виду гибридизации АО соответствует определенная геометрическая форма молекулы. Например, sp – гибридизации (две связи) соответствует линейная форма молекулы (BeCl 2 ), sp 2 – гибридизации (три связи) – плоская треугольная (BCl 3 ), sp 3 - гибридизации (четыре связи) – тетраэдрическая (CH 4 ).

Ионная связь – связь между ионами, осуществляемая их электростатическим взаимодействием. Ионная связь возникает между атомами металлов и неметаллов, резко отличающимися по своей электроотрицательности. Механизм образования ионной связи заключается в переходе электронов от одного атома к другому (более электроотрицательному), в результате чего атомы превращаются в противоположно заряженные ионы (катион и анион) и происходит их электростатическое взаимодействие. Свойства ионной связи – ненаправленность и ненасыщаемость.

Металлическая связь – это связь, образованная в результате перекрывания валентных орбиталей атомов металлов, в результате чего электроны свободно перемещаются из одной орбитали в другую, осуществляя связь между всеми атомами кристалла металла.

Примеры решения задач

Пример 1. Объясните механизм образования ковалентной химической связи в молекуле HBr и оцените степень ее полярности.

Р е ш е н и е. 1) Для объяснения механизма образования ковалентной химической связи необходимо определить, какие электроны участвуют в образовании этой связи. Запишем электронные конфигурации атомов и электронные схемы строения их валентных уровней; изобразим форму АО, участвующих в образовании связи.

Br 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5

Для образования ковалентной связи атомы водорода и брома предоставляют по одному неспаренному электрону с антипараллельными спинами: атом Н – электрон, находящийся на s – АО (форма АО – сфера), а атом Br – электрон с
p – АО (форма АО – гантель).

2) Покажем механизм образования ковалентной связи в молекуле HBr .

В молекуле HBr связь создается за счет перекрывания двух атомных орбиталей: s – АО и p – АО с образованием между ядрами атомов H и Br зоны повышенной электронной плотности:

H Br

3) Для определения степени полярности связи рассчитаем разность электроотрицательностей атомов, образующих молекулу: ЭО Н = 2,2; ЭО Br = 2,8; т.е. ЭО H − Br = 0,6, поэтому связь в молекуле HBr ковалентная полярная.

4) Определим вид химической связи в зависимости от способа перекрывания АО взаимодействующих атомов. В молекулах с одинарной химической связью (а именно таковой является молекула HBr ) всегда образуется σ – связь как более прочная. В случае σ – связи область перекрывания АО расположена на линии, соединяющей ядра двух атомов.

Пример 2. Определите химические свойства, валентность и возможные степени окисления атома углерода в основном и возбужденном состояниях.

Р е ш е н и е. 1) Рассмотрим основное состояние атома углерода. Так как химические свойства атома определяются его электронным строением, составим электронную конфигурацию атома С и выделим строениевалентного уровня:

С Z = +6 , 1s 2 2s 2 2p 2

2) Составим электронную схему валентного уровня и определим химические свойства атома С , его валентность и степень окисления.

Валентность атома определяется числом неспаренных электронов валентного уровня. Из данной схемы видно, что атом углерода имеет два неспаренных валентных электрона, значит в основном состоянии валентность атома углерода равна двум (В=II), т.е. атом углерода может образовывать две химические связи. Вступая во взаимодействие с другими атомами, атом С стремится завершить свой внешний уровень. Поэтому он может отдать эти два неспаренных электрона, проявляя при этом восстановительные свойства и превращаясь в положительно заряженный ион со степенью окисления +2: С 0 − 2 ē = С +2

2s 2 2p 2 2s 2 (типа He)

Но атом углерода, как неметалл, может принимать недостающие до завершения внешнего уровня четыре электрона, проявляя окислительные свойства и превращаясь в отрицательно заряженный ион со степенью окисления – 4:

С 0 + 4 ē = С -4

2s 2 2p 2 2s 2 2p 6 (типа Ne)

3) Рассмотрим возбужденное состояние атома углерода. Для возбуждения атома необходимо наличие свободной АО внутри валентного уровня и спаренных электронов. Из электронной схемы строения внешнего уровня атома углерода видно, что атом С имеет вакантную АО на 2p – подуровне, а из четырех валентных электронов два электрона (2s 2 ) спарены. Следовательно, атом углерода может находиться в возбужденном состоянии. При возбуждении происходит распаривание 2s 2 - электронов и переход их с 2s - на 2p – подуровень:

С 0 …2s 2 2p 2 → С* … 2s 1 2p 3

Основное состояние Возбужденное состояние

При возбуждении число неспаренных электронов увеличивается до четырех. Значит в возбужденном состоянии атом углерода проявляет валентность В=IV и образует четыре химические связи. В возбужденном состоянии атом С может только отдать на связь свои 4ē , проявляя восстановительные свойства и превращаясь в положительно заряженный ион со степенью окисления +4:

С 0 – 4 ē = С +4

2s 2 2p 2 1s 2 (типа He)

Пример 3. Определите, какая связь C−N или C−H является более полярной. Укажите, к ядру какого атома происходит смещение общей электронной пары.

Р е ш е н и е. Для определения полярности связи необходимо найти разность электроотрицательностей атомов (∆ЭО ), образующих эти связи. Из табл.1 выписываем значения ЭО этих атомов и находим ∆ЭО:
ЭО С = 2,5; ЭО N = 3,0; ЭО H = 2,1; ∆ЭО C − N = 3,0 – 2,5 = 0,5; ∆ЭО C − H = 2,5 – 2,1 = 0,4.

Известно, что чем больше ∆ЭО атомов, образующих связь, тем выше полярность связи. Поэтому более полярной является связь C–N . При образовании ковалентной связи общая электронная пара смещается к ядру атома с большей ЭО . В химической связи C−N общая электронная пара смещена к атому N , а в химической связи C−H – к атому С .