Меню
Бесплатно
Главная  /  Процедуры  /  Особенности строения интерфазных хромосом. Их функция. Понятие о хроматине, виды хроматина. Половой хроматин. Морфо-функциональная характеристика и классификация хромосом Оплодотворение и ооплазматическая сегрегация

Особенности строения интерфазных хромосом. Их функция. Понятие о хроматине, виды хроматина. Половой хроматин. Морфо-функциональная характеристика и классификация хромосом Оплодотворение и ооплазматическая сегрегация

В зависимости от периода клеточного цикла хромосомы могут находиться в ядре в двух состояниях – конденсированном, частично конденсированном и полностью конденсированном.

Раньше для обозначения упаковки хромосом употребляли термин – спирализация, деспирализация. В настоящее время используют более точный термин конденсация, деконденсация. Этот термин более ёмкий и включает процесс спирализации хромосомы, её укладку и укорочение.

Во время интерфазы экспрессия (функция, работа) генов максимальна и хромосомы имеют вид тонких нитей. Те участки нити, в которых происходит синтез РНК – деконденсированы, а те участки, где синтез не происходит, – наоборот, конденсированы (рис. 19).

Во время деления, когда ДНК в хромосомах практически не функционирует, хромосомы представляют собой плотные тельца, похожие на «Х» или «У». Это связано с сильной конденсацией ДНК в хромосомах.

Особо необходимо уяснить, что наследственный материал по-разному представлен в клетках, находящихся в интерфазе и в момент деления. В интерфазе в клетке отчётливо просматривается ядро, наследственный материал, в котором представлен хроматином. Хроматин, в свою очередь, состоит из частично конденсированных нитей хромосом. Если же рассматривать клетку во время деления, когда ядра уже нет, то весь наследственный материал концентрируется в хромосомах, которые максимально конденсированы (рис. 20).

Совокупность всех нитей хромосом, состоящих из ДНК и различных белков, в ядрах эукариотических клеток носит название хроматин (см. рис. 19. В). Хроматин в свою очередь делится на эухроматин и гетерохроматин . Первый слабо окрашивается красителями, т.к. содержит тонкие неконденсированные нити хромосом. Гетерохроматин, напротив, – содержит конденсированную, а следовательно, хорошо прокрашиваемую нить хромосомы. Неконденсированные участки хроматина содержат ДНК, в которой функционируют гены (т.е. происходит синтез РНК).


А Б В

Рис. 19. Хромосомы в интерфазе.

А – выделенная нить хромосомы из ядра клетки, находящейся в интерфазе. 1- конденсированный участок; 2 – неконденсированный участок.

Б – выделенные несколько нитей хромосом из ядра клетки, находящейся в интерфазе. 1 – конденсированный участок; 2 – неконденсированный участок. В – ядро клетки с нитями хромосом, находящейся в интерфазе. 1 – конденсированный участок; 2 – неконденсированный участок; 1 и 2 – хроматин ядра.

Клетка в интерфазе Клетка во время деления


Ядро Хромосомы

Рис. 20. Два состояния наследственного материала в клетках в клеточном цикле: А – в интерфазе наследственный материал расположен в хромосомах, которые частично деконденсированы и расположены в ядре; Б – при делении клетки наследственный материал выходит из ядра, хромосомы располагаются в цитоплазме.

Необходимо помнить, что если ген функционирует, то ДНК в этом участке деконденсирована. И наоборот, конденсация ДНК гена свидетельствует о блокаде активности гена. Феномен конденсации и деконденсации участков ДНК достаточно часто можно обнаружить, когда в клетке регулируется активность (включения или выключения) генов.

Субмолекулярное строение хроматина (в дальнейшем мы будем их называть интерфазные хромосомы) и хромосом делящейся клетки (в дальнейшем мы будем их называть метафазные хромосомы) до настоящего времени полностью не выяснено. Однако ясно, что при различных состояниях клетки (интерфаза и деление) организация наследственного материала различна. В основе интерфазных (ИХ) и метафазных хромосом (МХ) лежит нуклеосома . Нуклеосома состоит из центральной белковой части, вокруг которой обёрнута нить ДНК. Центральную часть образуют восемь молекул белка-гистона – Н2А, Н2В, Н3, Н4 (каждый гистон представлен двумя молекулами). В связи с этим сердцевина нуклеосомы носит название тетрамер, октамер иликор . Молекула ДНК в форме спирали обвивает кор 1,75 раз и переходит на соседний кор, обвивает его и переходит на следующую. Таким образом создаётся своеобразная фигура, напоминающая нитку (ДНК) с нанизанными на ней бусами (нуклеосомами).

Между нуклеосомами лежит ДНК, которая называется линкерной . С ней может связываться ещё один гистон – Н1. Если он связывается с линкерным участком, то ДНК изгибается и сворачивается в спираль (рис. 21. Б). Гистон Н1 принимает участие в сложном процессе конденсации ДНК, при котором нитка бус сворачивается в спираль толщиной 30 нм. Эта спираль носит название соленоид . Нити хромосом интерфазных клеток состоят из нитей бус и соленоидов. В метафазных хромосомах соленоид сворачивается в суперспираль, которая соединяется с сетчатой структурой (из белков), формируя петли, которые укладываются уже в виде хромосомы. Такая упаковка приводит к почти 5000-кратному уплотнению ДНК в метафазной хромосоме. На рисунке 23 представлена схема последовательной укладки хроматина. Понятно, что процесс спирализации ДНК в ИХ и МХ намного сложнее, но сказанное даёт возможность уяснить наиболее общие принципы упаковки хромосом.



Рис. 21. Строение нуклеосом:

А – в неконденсированной хромосоме. Гистон Н1 не связан с линкерной ДНК. Б – в конденсированной хромосоме. Гистон Н1 связан с линкерной ДНК.

Необходимо отметить, что, каждая хромосома в метафазе состоит из двух хроматид, удерживаемых с помощью центромеры (первичной перетяжки). В основе каждой из этих хроматид лежат упакованные порознь дочерние молекулы ДНК. После процесса компактизации они становятся хорошо различимыми в световой микроскоп хроматидами одной хромосомы. В конце митоза они расходятся по дочерним клеткам. С момента отделения хроматид одной хромосомы друг от друга, их уже называют хромосомами, то есть хромосома содержит либо две хроматиды, перед делением, либо – одну (но она называется уже хромосомой) после деления.

Некоторые хромосомы, кроме первичной перетяжки, имеют вторичную. Её ещё называют ядрышковый организатор . Это тонкая нить хромосомы, на конце которой помещается спутник. Вторичная перетяжка, как и основная хромосома, состоит из ДНК, на которой располагаются гены, ответственные за синтез рибосомальных РНК. На концах хромосомы располагается участок, называемый теломерой . Он как бы «запечатывает» хромосому. Если теломера случайно отрывается, образуется «липкий» конец, который может соединиться с таким же концом другой хромосомы.

Клетка в интерфазе Делящаяся клетка

Нить хромосомы



Нуклеосома Гистон Н1

Рис. 22. Модель упаковки хромосомы в клетках, находящихся в интерфазе и митозе.

располагается посередине, хромосома имеет равные по величине плечи. В субметацентрических хромосомах центромера немного сдвинута к одному концу. Плечи хромосомы не одинаковы по длине – одно длиннее другого. В акроцентрических хромосомах центромера располагается почти на конце хромосомы и короткие плечи трудно различимы. Количество хромосом постоянно для каждого вида. Так, кариотип человека содержит 46 хромосом. У дрозофилы их 8, а в клетке пшеницы – 14.

Совокупность всех метафазных хромосом клетки, их форма и морфология называется кариотипом . По форме различают три типа хромосом – метацентрические, субметацентрические и акроцентрические (рис. 23). В метацентрических хромосомах центромера

Ядрышко

Это плотное, хорошо прокрашиваемое тельце, расположенное внутри ядра. В нем обнаружены ДНК, РНК и белки. Основу ядрышка составляют ядрышковые организаторы – участки ДНК, несущие множественные копии генов рРНК. На ДНК ядрышковых организаторов происходит синтез рибосомальных РНК. К ним присоединяются белки и формируется сложное образование - рибонуклеопротеидные (РНП) частицы. Это предшественники (или полуфабрикаты) малой и большой субъединиц рибосом. Процесс образования РНП в основном происходит в периферической части ядрышек. Предшественники ри-

Спутник


Рибосомы

Предшественники рибосом

Рис. 24. Формирование рибосом в ядрышке ядра.

Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках и может изменяться в индивидуальной клетке. Чем интенсивнее происходит процесс формирования рибосом в цитоплазме, тем активнее осуществляется синтез специфических белков на рибосомах. В этом отношении примечательно действие стероидных гормонов (СГ) на клетки-мишени. СГ попадают в ядро и активируют синтез рРНК. В результате возрастает количество РНП и, как следствие, увеличивается число рибосом в цитоплазме. Это приводит к значительному возрастанию уровня синтеза специальных белков, которые через ряд биохимических и физиологических реакций обеспечивают определённый фармакологический эффект (например, разрастается железистый эпителий в матке).

В зависимости от фазы клеточного цикла внешний вид ядрышка заметно меняется. С началом митоза ядрышко уменьшается, а затем и вовсе исчезает. В конце митоза, когда возобновляется синтез рРНК, миниатюрные ядрышки вновь возникают на участках хромосом, содержащих гены рРНК.

Ядерный матрикс

Хромосомы в трёхмерном пространстве ядра располагаются не хаотично, а строго упорядоченно. Этому способствует каркасная внутриядерная структура, называемая ядерным матриксом или скелетом. В основе этой структуры - ядерная ламина (см. рис. 19). К ней прикрепляется внутренний белковый каркас, занимающий весь объём ядра. Хромосомы в интерфазе прикрепляются и к ламине и к участкам внутреннего белкового матрикса.

Все перечисленные компоненты – не застывшие жёсткие структуры, а подвижные образования, архитектура которых меняется в зависимости от функциональной особенности клетки.

Ядерный матрикс играет важную роль в организации хромосом, репликации ДНК и транскрипции генов. Ферменты репликации и транскрипции закреплены на ядерном матриксе, а нить ДНК «протаскивается» через этот фиксированный комплекс.

В последнее время ламина ядерного матрикса привлекает внимание исследователей, работающих над проблемой долгожительства. Исследования показали, что ламина состоит из нескольких различных белков, которые кодируются генами. Нарушение структуры этих генов (а следовательно, и белков ламины) резко сокращает продолжительность жизни экспериментальных животных.

Контрольная работа №3

«Ядро клетки: основные компоненты ядра, их структурно-функциональная характеристика. Наследственный аппарат клетки. Временная организация наследственного материала: хроматин и хромосомы. Строение и функции хромосом. Понятие о кариотипе.

Закономерности существования клетки во времени. Воспроизведение на клеточном уровне: митоз и мейоз. Понятие об апоптозе»

Вопросы для самоподготовки:


Роль ядра и цитоплазмы в передаче наследственной информации; Характеристика ядра как генетического центра. Роль хромосом в передаче наследственной информации. Правила хромосом; Цитоплазматическая (внеядерная) наследственность: плазмиды, эписомы, их значение в медицине; Основные компоненты ядра, их структурно-функциональная характеристика. Современные представления о строении хромосом: нуклеосомная модель хромосом, уровни организации ДНК в хромосомах; Хроматин как форма существования хромосом (гетеро - и эухроматин): строение, химический состав; Кариотип. Классификация хромосом (Денверская и Парижская). Типы хромосом; Жизненный цикл клетки, его периоды, его варианты (особенности у различных видов клеток). Понятие о стволовых, покоящихся клетках. Митоз - характеристика его периодов. Регуляция митоза. Морфофункциональная характеристика и динамика структуры хромосом в клеточном цикле. Биологическое значение митоза. Понятие об апоптозе. Категории клеточных комплексов. Митотический индекс. Понятие о митогенах и цитостатиках.

ЧАСТЬ 1.Самостоятельная работа:


Задание № 1. Ключевые понятия темы

Выберите из списка подходящие термины и распределите в левую колонку таблицы 1, соответственно определениям.

Хромосомы метафазные, Хромосомы метацентрические, Хромосомы акроцентрические; Мейоз; Сперматозоид; Сперматоцит; Цитокинез; Бинарное деление; Сперматогенез; Сперматогонии; Митоз; Моноспермия; Шизогония; Эндогония; Овогенез; Амитоз; Апоптоз; Изогамия; Гаметогенез; Спорообразование; Гаметы; Гаплоидный набор хромосом; Цитокинез; Овогонии (оогонии); Анизогамия; Овотида (яйцеклетка); Оплодотворение; Партеногенез; Овогамия; Фрагментация; Гермафродитизм; Жизненный цикл клетки; Интерфаза; Клеточный (митотический цикл).

    это редукционное деление, которое происходит при созревании половых клеток; в результате этого деления образуются гаплоидные клетки, т. е. имеющие одинарный набор хромосом

это прямое деление клетки, при котором не происходит равномерного распределения наследственного материала между дочерними клетками

часть жизненного цикла клетки, в течение которого дифференцированная клетка выполняет свои функции, и происходит подготовка к делению

    деление цитоплазмы, следующее за делением ядра.
    хромосомы, у которых первичная перетяжка (центромера) расположена близко к теломерному участку;
    реплицированные, максимально спирализованные хромосомы на стадии метафазы, расположенные в экваториальной плоскости клетки;
    хромосомы у которых первичная перетяжка (центромера) расположена посередине и делит тело хромосомы на два равных по длине плеча (равноплечие хромосомы);

Задание №2. «Степень спирализации хроматна и локализация хроматина в ядре».

По материалам лекции и учебному пособию «Цитология» 1) изучите хроматинв зависимости от степени его спирализации и заполните схему:

2) изучите хроматин в зависимости от локализации в ядре и заполните схему:

ЧАСТЬ 2. Практическая работа:

Задание №1. Изучите предложенную ниже кариограмму человека и письменно ответьте на вопросы:

1) Хромосомный набор какого пола (мужского или женского) отражает кариограмма? Ответ поясните.

2) Укажите число аутосом и половых хромосом, представленных на кариограмме.

3) К какому типу хромосом относится У-хромосома?

Определите пол и впишите словом в рамку, поясните свой ответ:

«Кариограмма человека»

Ответ с пояснением:



ЧАСТЬ 3. Проблемно-ситуационные задачи:

1.В клетке нарушен синтез гистоновых белков. Какие последствия это может иметь для клетки?

2. На микропрепарате обнаружены не идентичные друг другу дву - и многоядерные клетки, некоторые из которых вообще не содержали ядер. Какой процесс лежит в основе их образования? Дайте определение этому процессу.

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин ). Более светлые участки – участки слабой спирализации (эухроматин ).

Типы хромосом выделяют по расположению центромеры (рис.).

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.

3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом: хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.

Кариотип (от карио... и греч. tэpos - образец, форма, тип), хромосомный набор, совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида. Понятие К. введено сов. генетиком Г. А. Левитским (1924). К. - одна из важнейших генетических характеристик вида, т.к. каждый вид имеет свой К., отличающийся от К. близких видов (на этом основана новая отрасль систематики - так называемая кариосистематика)

Генетика человека – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения

Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению.).

Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.

Цитологический метод основан на микроскопическом изучении хромосом в клетках человека. Цитогенетический метод широко применяется с 1956 года, когда Дж. Тио и Л. Леван установили, что в кариотипе человека 46 хромосом.

Цитогенетический метод основывается на данных о хромосомах. В 1960 году на научной конференции в Денвере была принята классификация идентифицируемых хромосом, в соответствии с которой им были даны номера, увеличивающиеся по мере уменьшения размеров хромосом. Эта классификация была уточнена на конференции в Лондоне (1963) и Чикаго (1966).

Применение цитогенетического метода позволяет изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, и, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением структуры хромосом. Цитогенетический метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Метод широко применяется в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней.



Цитологический анализ включает три основынх этапа:

Культивирование клеток;

Окраска препарата;

Микроскопический анализ препарата.

Цитогенетические методы используются и для описания интерфазных клеток. Например, по наличию или отсутствию полового хроматина (телец Барра, представляющих собой инактивированные X-хромосомы) можно не только определять пол индивидов, но и выявлять некоторые генетические заболевания, связанные с изменением числа X-хромосом.

Морфофункциональная характеристика и классификация хромосом. Кариотип человека. Цитологический метод.

Хромосо́мы (HYPERLINK "http://ru.wikipedia.org/wiki/%D0%94%D1%80%D0%B5%D0%B2%D0%BD%D0%B5%D0%B3%D1%80%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA" \o "Древнегреческий язык" др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки, которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. В хромосомах сосредоточена большая часть наследственной информации. В основу идентификации хромосом положены следующие признаки: общая длина хромосомы, размещение центромеры, вторичная перетяжка и др.

Типы строения хромосом

Различают четыре типа строения хромосом:

телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);

акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);

субметацентрические (с плечами неравной длины, напоминающие по форме букву L);

метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла. Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов.

Политенные хромосомы

Впервые обнаружены Бальбиани в 1881-го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

Бактериальные хромосомы

Прокариоты (археи и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

Кариотип человека (от греч. - орех, ядро и - отпечаток, тип) - диплоидный хромосомный набор человека, представляющий собой совокупность морфологически обособленных хромосом, внесённых родителями при оплодотворении.

Хромосомы набора генетически неравноценны: каждая хромосома содержит группу разных генов. Все хромосомы в кариотипе человека делятся на аутосомы и половые хромосомы. В кариотипе человека 44 аутосомы (двойной набор) - 22 пары гомологичных хромосом и одна пара половых хромосом - XX у женщин и ХУ у мужчин.

Цитологические методы исследования в медицине, цитологическая диагностика, методы распознавания заболеваний и исследования физиологического состояния организма человека на основании изучения морфологии клеток и цитохимических реакций. Применяются: 1) в онкологии для распознавания злокачественных и доброкачественных опухолей; при массовых профилактических осмотрах с целью выявления ранних стадий опухолевого процесса и предраковых заболеваний; при наблюдении за ходом противоопухолевого лечения; 2) в гематологии для диагностики заболеваний и оценки эффективности их лечения; 3) в гинекологии - как с целью диагностики онкологических заболеваний, так и для определения беременности, гормональных нарушений и т.д.; 4) для распознавания многих заболеваний органов дыхания, пищеварения, мочевыделения, нервной системы и т.д. и оценки результатов их лечения.
Разработаны критерии цитологической диагностики болезней крови, ретикулоэндотелиальной системы, некоторых заболеваний желудка, почек, туберкулёза лёгких, кожных болезней и т.д. При необходимости проводят срочную цитологическую диагностику. Цитологические методы исследования часто сочетают с гистологическими исследованием.

88.Оплодотворение и ооплазматическая сегрегация.

Оплодотворение

сингамия, у растений, животных и человека - слияние мужской и женской половых клеток - гамет, в результате чего образуется Зигота, способная развиваться в новый организм. О. лежит в основе полового размножения и обеспечивает передачу наследственных признаков от родителей потомкам. Оплодотворение у растений. О. свойственно большинству растений; ему обычно предшествует образование гаметангиев - половых органов, в которых развиваются гаметы. Часто эти процессы объединяют под общим названием половой процесс. Растения, имеющие половой процесс, имеют в цикле развития и Мейоз, т. е. обнаруживают смену ядерных фаз. Типичного полового процесса нет у бактерий и синезелёных водорослей; неизвестен он и у некоторых грибов. Типы полового процесса у низших растений разнообразны. Одноклеточные водоросли (например, некоторые хламидомонады) как бы сами превращаются в гаметангии, образуя гаметы; Для водорослей конъюгат (например, спирогиры) характерна Конъюгация: протопласт одной клетки перетекает в другую (принадлежащую той же или др. особи), сливаясь с её протопластом. Слияние имеющих жгутики гамет различной величины (большая - женская, меньшая - мужская; например, у некоторых хламидомонад) называется гетерогамией (См. Гетерогамия) (рис. 1, 3). Слияние крупной безжгутиковой женские гаметы (яйцеклетка) и мелкой мужской, чаще имеющей жгутики (сперматозоид), реже - безжгутиковой (спермаций), называется оогамией (См. Оогамия). Женские гаметангии большинства оогамных низших растений называются оогониями, мужские - антеридиями

У семенных растений, имеющих спермии, последние перемещаются к яйцеклеткам по пыльцевым трубкам. У покрытосеменных происходит Двойное оплодотворение: один спермий сливается с яйцеклеткой, второй - с центральной клеткой зародышевого мешка (женского заростка). Осуществление О. вне зависимости от наличия свободной воды - одно из важнейших приспособлений семенных растений к существованию на суше.

Оплодотворение у животных и человека заключается в слиянии (сингамии) двух гамет разного пола - спермия и яйца. О. имеет двоякое значение: 1) контакт спермия с яйцом выводит последнее из заторможенного состояния и побуждает к развитию; 2) слияние гаплоидиых ядер спермия и яйца - кариогамия - приводит к возникновению диплоидного синкариона, объединяющего отцовские и материнские наследственные факторы. Возникновение при О. новых комбинаций этих факторов создаёт генетическое разнообразие, служащее материалом для естественного отбора и эволюции вида. Необходимая предпосылка О. - уменьшение числа хромосом вдвое, что происходит во время мейоза.Встреча сперматозоида с яйцом обычно обеспечивается плавательными движениями мужских гамет после того, как они выметаны в воду или введены в половые пути самки (см. Осеменение). Встрече гамет способствует выработка яйцами гамонов (См. Гамоны), усиливающих движения спермиев и продлевающих период их подвижности, а также веществ, вызывающих скопление спермиев вблизи яйца. Зрелое яйцо окружено оболочками, имеющими у некоторых животных отверстия для проникновения спермиев - Микропиле. У большинства животных микропиле отсутствует, и, чтобы достигнуть поверхности ооплазмы, спермии должны проникнуть через оболочку, что осуществляется с помощью специального органоида сперматазоида - акросомы. После того как спермий концом головки коснётся яйцевой оболочки, происходит акросомная реакция: акросома раскрывается, выделяя содержимое акросомной гранулы, и заключённые в грануле ферменты растворяют яйцевые оболочки. В том месте где раскрылась акросома, её мембрана сливается с плазматической мембраной спермия; у основания акросомы акросомная мембрана выгибается и образует один или несколько выростов которые заполняются расположенным между акросомой и ядром (субакросомальным) материалом, удлиняются и превращаются в акросомные нити или трубочки. Акросомная нить проходит через растворённую зону яйцевой оболочки, вступает в контакт с плазматической мембраной яйца и сливается с ней.

Сегрегация ооплазматическая (биологическая), возникновение локальных различий в свойствах ооплазмы, осуществляющееся в периоды роста и созревания ооцита, а также в оплодотворённом яйце. С. - основа для последующей дифференцировки зародыша: в процессе дробления яйца участки ооплазмы, различающиеся по своим свойствам, попадают в разные бластомеры; взаимодействие с ними одинаковых по своим потенциям ядер дробления приводит к дифференциальной активации генома. У разных животных С. наступает неодновременно и бывает выражена в разной степени. Наиболее ярко она проявляется у животных с мозаичным типом развития, но наблюдается и у животных с регуляционным типом развития. Примеры С.: образование полярных плазм у моллюсков, концентрация РНК в будущем спинном полушарии яйца млекопитающих.

Интерфазная хромосома - это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То есть функция интерфазной ХР - передача информации с генома, последовательности нуклеотидов в молекуле ДНК, для синтеза необходимых белков, ферментов и т. д.
Когда приходит время деления клетки необходимо сохранить всю имеющуюся информацию и передать ее в дочерние клетки. В состоянии "раздрая" ХР этого сделать не может. Поэтому хромосоме приходится структурироваться - скручивать нить своей ДНК в компактную структуру. ДНК к этому времени уже удвоена и каждая нить скручивается в свою хроматиду. 2 хроматиды образуют хромосому. В профазе под микроскопом в ядре клетки становятся заметны маленькие рыхлые комочки - это будущие ХР. Они постепенно укрупняются и формируют видимые хромосомы, которые к середине метафазы выстраиваются по экватору клетки. В норме в телофазе равное количество хромосом начинает двигаться к полюсам клетки. (я не повторяю 1-го ответа, там все правильно. Суммируйте информацию) .
Однако случается иногда, что хроматиды цепляются друг за друга, переплетаются, кусочки отрываются - а результате две дочерние клетки получают немного неравную информацию. Такая штука называется патологический митоз. После него дочерние клетки будуи работать неправильно. При сильном повреждении хромосом клетка погибнет, при более слабом не сможет разделиться еще раз или даст череду неправильных делений. Такие вещи приводят к возникновению заболеваний, от нарушений биохимической реакции в отдельной клетке, до заболевания раком какого-то органа. Клетки делятся во всех органах, но с разной интенсивностью, поэтому у разных органов - разная вероятность заболеть раком. К счастью такие патологические митозы бывают не слишком часто и природа придумала механизмы избавления от получившихся неправильных клеток. Только когда среда обитания организма очень плохая (повышен радиоактивный фон, сильные загрязнения воды, воздуха вредными хим. веществами, бесконтрольное применение лекарственных препаратов и т. п.) -природный защитный механизм не справляется. В таком случае вероятность появления заболеваний увеличивается. Нужно стараться свести вредные факторы воздействия на организм к минимуму и принимать биопротекторы в виде живой пищи, свежего воздуха, витаминов и веществ необходимых в данной местности, это может быть иод, селен, магний или что-то еще. Не игнорируйте заботу о своем здоровье.

Хроматин (греч. χρώματα - цвета, краски) - это вещество хромосом - комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК

Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.

Половой хроматин - особые хроматиновые тельца клеточных ядер особей женского пола у человека и других млекопитающих. Располагаются у ядерной оболочки, на препаратах имеют обычно треугольную или овальную форму; размер 0,7-1,2 мк (рис. 1). Половой хроматин образован одной из Х-хромосом женского кариотипа и может быть выявлен в любой ткани человека (в клетках слизистых оболочек, кожи, крови, биопсированной ткани), Наиболее простым исследованием полового хроматина является исследование его в клетках эпителия слизистой оболочки полости рта. Взятый шпателем соскоб со слизистой оболочки щеки помещают на предметное стекло, окрашивают ацетоорсеином и анализируют под микроскопом 100 светлоокрашенных клеточных ядер, подсчитывая, сколько из них содержат половой хроматин. В норме он встречается в среднем в 30-40% ядер у женщин и не обнаруживается у мужчин

15.Особенности строения метафазных хромосом. Типы хромосом. Хромосомный набор. Правила хромосом.

Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНП, уложенную в виде суперспирали. При спирализа-ции участки эу- и гетерохроматина укладываются закономерным образом, так что на протяжении хроматид образуются чередующиеся поперечные полосы. Их выявляют при помощи специальных окрасок. Поверхность хромосом покрыта различными молекулами, главным образом, рибонуклеопротеинами (РНП). В соматических клетках имеются по две копии каждой хромосомы, их называют гомологичными. Они одинаковы по длине, форме, строению, расположению полос, несут одни и те же гены, которые локализованы одинаково. Гомологичные хромосомы могут различаться аллелями генов, содержащихся в них. Ген - это участок молекулы ДНК, на котором синтезируется активная молекула РНК. Гены, входящие в состав хромосом человека, могут содержать до двух млн пар нуклеотидов.

Деспирализованные активные участки хромосом не видны под микроскопом. Лишь слабая гомогенная базофилия нуклеоплазмы указывает на присутствие ДНК; их можно выявить также гистохимическими методами. Такие участки относят к эухроматину. Неактивные сильно спирализованные комплексы ДНК и высокомолекулярных белков выделяются при окрасках в виде глыбок гетерохроматина. Хромосомы фиксированы на внутренней поверхности кариотеки к ядерной ламине.



Хромосомы в функционирующей клетке обеспечивают синтез РНК, необходимых для последующего синтеза белков. При этом осуществляется считывание генетической информации - ее транскрипция. Не вся хромосома принимает в ней непосредственное участие.

Разные участки хромосом обеспечивают синтез различных РНК. Особенно выделяются участки, синтезирующие рибосомные РНК (рРНК); ими обладают не все хромосомы. Эти участки называют ядрышковыми организаторами. Ядрышковые организаторы образуют петли. Верхушки петель разных хромосом тяготеют друг к другу и встречаются вместе. Таким образом формируется структура ядра, именуемая ядрышком (рис. 20). В нем различают три компонента: слабоокрашенный компонент соответствует петлям хромосом, фибриллярный - транскрибированной рРНК и глобулярный - предшественникам рибосом.

Хромосомы являются ведущими компонентами клетки, регулирующими все обменные процессы: любые метаболические реакции возможны только с участием ферментов, ферменты же всегда белки, белки синтезируются только с участием РНК.

Вместе с тем хромосомы являются и хранителями наследственных свойств организма. Именно последовательность нуклеоти-дов в цепях ДНК определяет генетический код.

Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. хромосомный набор-Кариоти́п - совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида, данного организма или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора. Термин «кариотип» был введён в 1924 году советским цитологом

Правила хромосом

1. Постоянство числа хромосом.

Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, У мушки дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность хромосом.

Каждая. хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Правило индивидуальности хромосом.

Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Правило непрерывности.

Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде, таким о6разом, хромосомы непепрывны: от хромосомы образуется хромосома.

16.Кариотип человека. Его определение. Кариограмма, принцип составления. Идиограмма, ее содержание.

Кариотип .(от карио... и греч. typos - отпечаток, форма),ттипичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч. idios - свой, своеобразный и...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Кариограмма (от карио... и... грамма),графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. - идиограмма -схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. - график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа -выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.