Меню
Бесплатно
Главная  /  Насморк у взрослых  /  Сообщение на тему сила тяжести на других планетах. Сила тяжести на других планетах: подробный разбор. На Луне и Солнце

Сообщение на тему сила тяжести на других планетах. Сила тяжести на других планетах: подробный разбор. На Луне и Солнце

Гравитация на Марсе значительно ниже, чем на Земле, если точнее, то на 62% ниже. Это означает, что марсианская гравитация составляет 38% от Земной. Человек массой 100 кг, на Марсе весил бы 38 кг.

Сила тяжести

Марс меньше Земли и это определяет силу тяжести на планете. Ньютон использовал закон всемирного тяготения чтобы описать как работает сила притяжения, однако он описал только часть явления. Эйнштейн заявил, что гравитация это просто искривление пространства-времени, которое создается массой объекта.

Сообщество ученых по квантовой физике предложило теоретическую частицу, названную “гравитон”, которая создает притяжение, так что у нас теперь есть современное понимание тяжести, но это явление все еще покрыто тайной и является препятствием на пути к созданию универсальной теории всех взаимодействий во Вселенной.

Негативные моменты низкой гравитации

Известно, что люди страдают от потери костной массы, при низкой гравитации, поэтому при освоении таких планет как Марс, нужно учитывать долгосрочное влияние низкой силы тяжести на организм и проводить научные исследования, касающиеся влияния низкой силы тяжести.

Преодоление последствий низкой гравитации может быть отправной точкой для освоения человеком других планет.

· · · ·
·

До изобретения телескопа было известно лишь семь планет: Меркурий, Венера, Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.

Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».

Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами.

Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле F T = mg, где g = GM/R 2 - ускорение свободного падения на планете. Подставляя в последнюю формулу массу M и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!

Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2*10 21 кг (т. е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно, - рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».

Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и R Чаффи.

1. Перечислите все большие планеты, входящие в состав Солнечной системы. 2. Как называется самая большая из них и самая маленькая? 3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле? 4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле? 5. Что вы знаете о Церере? 6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

«Физика - 10 класс»

Чем различаются сила тяжести и сила тяготения?
Что влияет на значение силы тяжести?

Сила тяжести возникает в результате взаимодействия тела с Землёй при учёте суточного вращения Земли.

Поясним, как влияет суточное вращение Земли на значение силы тяжести. Как мы знаем, Земля вращается вокруг собственной оси с периодом, равным 24 часам. Следовательно, система отсчёта, связанная с Землёй, является неинерциальной, и тело, находящееся на Земле, находится в неинерциальной системе отсчёта (рис. 3.4). Вследствие этого на тело действует, помимо силы тяготения, центробежная сила инерции, равная гто2г и направленная от центра окружности, по которой вращается тело Равнодействующая этих двух сил и будет силой тяжести, равной тяж = m = тяг + m цc .

Ускорение свободного падения не направлено по радиусу к центру Земли, а направлено, как мы видим, под углом к этому радиусу. Центростремительное ускорение зависит от радиуса окружности, по которой движется тело, следовательно сила тяжести и ускорение свободного падения зависят от широты местности. На полюсе ускорение свободного падения максимально и равно 9,83 м/с 2 , а на экваторе минимально и равно 9,78 м/с 2 .

Рассмотрим движение тела относительно инерциальной системы отсчёта, например системы, связанной со звёздами (рис. 3.5).

Запишем согласно второму закону Ньютона уравнение движения тела m цс = тяг + , где - сила нормального давления. В состоянии покоя сила тяжести по модулю равна силе нормального давления и направлена в противоположную сторону тяж = -, отсюда следует, что тяж = тяг + m цс. Сила тяжести зависит также от высоты подъёма тела над уровнем моря.

Так как согласно закону всемирного тяготения то после преобразований можно получить, что сила тяжести, действующая на тело, находящееся на расстоянии h над поверхностью Земли, равна

По таблице значений масс и радиусов планет Солнечной системы оцените, на какой из планет сила тяжести отличается от силы тяжести, действующей на тело на Земле наиболее существенно. При этом рассматривайте тело, находящееся на полюсе, чтобы исключить влияние на значение силы тяжести вращения планеты.

На Луне и других планетах сила тяжести отличается от силы тяжести на Земле, так как изменяется сила тяготения. Сила тяготения, как мы видели, определяется массой планеты и её радиусом. Масса и радиус Луны меньше, чем масса и радиус Земли, поэтому сила тяжести на Луне существенно меньше. Так, на тело массой 1 кг на Луне действует сила тяжести, равная 1,7 Н.

Рассчитаем силу тяжести, действующую на тело массой 1 кг, находящееся на поверхности Венеры, при этом пренебрежём влиянием вращения Венеры вокруг собственной оси. Это можно сделать потому, что период вращения Венеры вокруг собственной оси почти в 10 раз больше, чем аналогичный период вращения Земли. Масса Венеры М B = 0,82М 3 , радиус R B = 0,95 R 3 .

Соответственно и ускорение свободного падения на Венере равно g B = 0,91g 3 ≈ 8,9 м/с 2 .

Таким образом, ускорение свободного падения на Венере несущественно отличается от ускорения свободно падения на Земле.

Если рассматривать другие планеты, например Марс, то сила тяжести на Марсе уже существенно отличается от силы тяжести, действующей на то же тело на Земле. Радиус Марса равен 0,53 радиуса Земли, а масса - 0,11

Следовательно,

Таким образом, ускорение свободного падения на Марсе приблизительно равно 3,8 м/с 2 .


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Динамика - Физика, учебник для 10 класса - Класс!ная физика

Юпитер

Масса этого газового гиганта превышает массу нашей старушки Земли более чем в 300 раз, более того, его масса в два раза больше, чем все вместе взятые планеты солнечной системы! Только представьте себе, какая это огромная масса. И вся эта масса состоит в основном из Водорода и Гелия. Два этих газа составляют основу верхних слоев. Ученые предполагают, что ядро планеты все-таки состоит из более тяжелых элементов. Но точно никто не знает. Вокруг Юпитера вращается, по меньшей мере, 63 луны. Четыре крупнейших из них первым обнаружил в 1610 году, Галилео Галилей. Они позже так и были названы в честь него «галилеевыми». Не правда ли занимательно, но дальше лучше! Примерно 15 лет назад, в астрофизике укоренилась теория о том, что у этого гиганта есть интереснейший свойство. Оказывается, что эта планета, то и есть Юпитер, для нашей Земли несет, можно сказать, жизненно важную функцию. Благодаря своей огромной массе и быстрому вращению -- этот гигант обладает повышенной силой притяжения. Для сравнения можем взять наше земное притяжение, к которому мы все с вами привыкли. На земле коэффициент силы тяжести равен 10 Н/кг. На Юпитере этот же коэффициент равняется 24 Н/кг. Грубо говоря, если бы вы оказались вдруг на Юпитере, вы бы весили примерно в 2,5 раза больше. Исходя из изложенных выше данных, логично предположить, что все космические объекты, пролетающие поблизости с Юпитером, будут менять свою траекторию, вплоть до полного изменения курса и падения на поверхность газового гиганта.

юпитер планета сила космос

В подтверждение данной теории, можно привести тот факт, что у одного из спутников Юпитера, Ганимеда, диаметр превосходит значение диаметра планеты солнечной системы, Меркурия. В силу того, что на Ганимеда действует еще и притяжение нашей звезды то и есть Солнца, она не падает на Юпитер, но и не отрывается от него. Ганимеда движется вокруг Юпитера по околопланетной орбите созданной двумя силами: притяжением Юпитера и притяжением Солнца. Вот такой силищей обладает этот гигант, что уже говорить об астероидах, масса которых гораздо меньше массы Ганимеда. Если рассматривать схему построения планет, то выходит, что ближе к Солнцу, находится наша Земля. Далее следует Марс, за ним Юпитер. А за Юпитером стоит очень интересная планета и называется она, как вы уже, наверное, догадались -- Сатурн. Говорить о Сатурне можно много, но сегодня нас интересует только один момент. Сатурн окружен поясом, состоящим из метеоритов. Так вот следуя все той же логике, мы можем предположить, что время от времени из этого пояса некоторые метеориты могут выпадать. Вот тут то и вступает в дело Юпитер. Мы уже сказали, что Юпитер, обладает очень сильным гравитационным полем. Поэтому метеорит, вырвавшись из пояса, и проходя в непосредственной близости от Юпитера, повинуясь законам мироздания, под действием силы притяжения Юпитера, неизбежно меняет свой курс. И, в конце концов, летит не к Солнцу, а к поверхности Юпитера. Если бы не Юпитер, то вполне вероятно, что траектория метеорита вполне могла бы пересечься с траекторией нашей Земли. И тогда кто знает, какие катастрофы могли бы принести эти столкновения. Нужно также отметить, что Сатурн является не единственным поставщиком метеоритов. Но все метеориты, чья траектория совпадает с траекторией Юпитера, в дальнейшем уже не представляют угрозы для планет расположенных ближе к солнцу, то и есть и нашей земле в том числе. Да и кроме метеоритов есть еще и другие небесные тела, которые могут представлять угрозу при столкновении. Вы, наверное, догадались, что я имею ввиду -- это кометы. Кометы проникают в нашу Солнечную систему в основном из облака Орта, оно представляет собой внешнюю область, в пределах которой вращаются кометы в очень большом количестве. Так вот некоторые ученые-астрофизики предполагают, что Юпитер способен «отбрасывать» космические тела, прилетающие в нашу систему из облака Оорта.

Недавно группой ученых был создан ряд компьютерных моделей нашей Солнечной системы. В этих моделях наша система развивалась в разных вариантах построения. В некоторых Юпитер вообще был убран из Солнечной системы. В других случаях его масса была уменьшена. Так вот исследования показали, что если бы Юпитера, не было совсем, то вероятность столкновения нашей земли с Космическим телом было бы снижена на 30% . Но здесь следует сказать, что влияние на пояс астероидов, можно сказать крупнейший пояс, находящийся между Юпитером и Марсом, до конца не изучено. Так что результат не может быть точным. Но к поразительным результатам привело исследование, в котором масса Юпитера была уменьшена в четыре раза по отношению к настоящей массе. В результате было выявлено, что вероятность бомбардировки астероидами земли была выше на 500%, чем в случае, где планета Юпитер отсутствует вообще. Исходя из всего выше сказанного, можно предположить, что газовый гигант все-таки имеет значимое значение для защиты нашей Земли от атак из космоса.

Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее?

Пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

Известно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным.

Но Земля - не шар. Она сплюснута у полюсов и вытянута вдоль экватора. Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах. Конечно, обнаружить это изменение веса можно только с помощью пружинных весов. Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 0,5 кг.

Теперь уместно спросить: а как будет изменяться вес человека, путешествующего по планетам Солнечной системы?

Наша первая космическая станция - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53: 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70 кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):

Плутон 4,5 Меркурий 26,5 Марс 26,5 Сатурн 62,7 Уран 63,4 Венера 63,4 Земля 70,0 Нептун 79,6 Юпитер 161,2
Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 2 т и было бы мгновенно раздавлено собственной тяжестью. Впрочем, еще не достигнув Солнца, все превратилось бы в раскаленный газ. Другое дело - крошечные небесные тела, такие как спутники Марса и астероиды. На многих из них по легкости можно уподобиться... воробью!

Вполне понятно, что путешествовать по другим планетам человек может только в специальном герметичном скафандре, снабженном приборами системы жизнеобеспечения. Вес скафандра американских астронавтов, в котором они выходили на поверхность Луны, равен примерно весу взрослого человека. Поэтому приведенные нами значения веса космического путешественника на других планетах надо по меньшей мере удвоить. Только тогда мы получим весовые величины, близкие к действительным.